
Agile Construction of Data Science DSLs (Tool Demo)
Artur Andrzejak
Heidelberg University
Heidelberg, Germany
artur@uni-hd.de

Kevin Kiefer
Heidelberg University
Heidelberg, Germany

kiefer@stud.uni-heidelberg.de

Diego Elias Costa
Heidelberg University
Heidelberg, Germany

costa@informatik.uni-heidelberg.de

Oliver Wenz
Heidelberg University
Heidelberg, Germany

o.wenz@stud.uni-heidelberg.de

Abstract
Domain Specific Languages (DSLs) have proven useful in the
domain of data science, as witnessed by the popularity of
SQL. However, implementing and maintaining a DSL incurs
a significant effort which limits their utility in context of
fast-changing data science frameworks and libraries.

We propose an approach and a Python-based library/tool
NLDSL which simplifies and streamlines implementation of
DSLs modeling pipelines of operations. In particular, syn-
tax description and operation implementation are bundled
together as annotated and terse Python functions, which
simplifies extending and maintaining a DSL. To support ad
hoc DSL elements, NLDSL offers a mechanism to define DSL-
level functions as first-class DSL elements.
Our tool automatically supports each DSL by code com-

pletions and in-editor documentation in a multitude of IDEs
implementing the Microsoft’s Language Server Protocol. To
circumvent the problem of a limited expressiveness of a ex-
ternal DSL, our tool allows embedding DSL statements in
the source code comments of a general purpose language
and to translate the DSL to such a language during editing.
We demonstrate and evaluate our approach and tool by

implementing a DSL for data tables which is translated to
either Pandas or to PySpark code. A preliminary evaluation
shows that this DSL can be defined in a concise and main-
tainable way, and that it can cover a majority of processing
steps of popular Spark/Pandas tutorials.

CCS Concepts • Human-centered computing → User
interface programming; Natural language interfaces; • In-
formation systems → Information integration.

GPCE ’19, October 21–22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 18th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (GPCE ’19), October 21–22, 2019,
Athens, Greece, https://doi.org/10.1145/3357765.3359516.

Keywords DSL development, Code generation, Assisted
editing and IntelliSense, Data analysis frameworks, Apache
Spark, Python Pandas

ACM Reference Format:
Artur Andrzejak, Kevin Kiefer, Diego Elias Costa, and Oliver Wenz.
2019. Agile Construction of Data Science DSLs (Tool Demo). In
Proceedings of the 18th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE ’19), Octo-
ber 21–22, 2019, Athens, Greece. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3357765.3359516

1 Introduction
Domain Specific Languages (DSLs) have proven useful in de-
veloping software systems, and are increasingly adopted by
practitioners in a multitude of application domains [9, 13, 24].
They greatly facilitate communication between domain ex-
perts and developers, and can make software development
more efficient. For example, DSLs offer a more problem-
oriented, terse and (partially) declarative description of the
software solution. They can also hide irrelevant implement-
ation details, and eliminate "syntactic noise".

On the other hand, DSLs impose several challenges. Imple-
menting a DSL and a supporting editing environment might
incur significant development costs and require specialized
knowledge of parser/compiler technologies and correspond-
ing tools. Since DSLs are limited in scope, they might not
be able to express all elements of a particular solution. This
might require integration and mixing with general-purpose
languages like in the case of SQL and e.g. C/C++/Java (this
is typically the case for so-called external DSLs [13]). Fur-
ther disadvantages include need for developers to learn yet
another language, and possibly more complex build, testing,
and debugging processes.
We attempt to address these issues for a family of con-

strained DSLs, namely languages which model chains or
pipelines of operations. Software solutions which use the
concept of a pipeline of operations are frequently encountered
in modern data processing and analysis libraries, for example
in Apache Spark, in libraries for data science, like Pandas

https://doi.org/10.1145/3357765.3359516
https://doi.org/10.1145/3357765.3359516

GPCE ’19, October 21–22, 2019, Athens, Greece A. Andrzejak et al.

and sklearn for Python, or the R project (e.g. dplyr pack-
age1 with the pipeline operator ’%>%’). More general usage
of the pipeline of operations can be found in Java Streams
API and a variety of dataflow languages and tools [21]. Con-
sequently, pipeline-oriented DSLs have potentially a wide
range of applications.

We propose an approach and a tool to develop and support
usage of such DSL families. By constraining the language
design spectrum we are able to provide some benefits to DSL
developers and DSL "end-users". The DSL developers can
define and implement individual DSL operations (compon-
ents of a pipeline) in a terse and maintainable code, without
need for knowledge of complex API or sophisticated parsing
and code generation technologies. In particular, the syntax
of DSL operations and their key properties are stated in a
declarative way, as annotations and Python doc strings of
the code-generating Python function. This meta information
is leveraged by our tool for e.g. simplified argument pars-
ing, and automated support for code recommendations. In
addition, we provide a mechanism to declare and expand
DSL-level functions. This can be used to define new DSL
elements in an ad-hoc way.
Our tool allows generating target code from DSL in a

compiler-like mode, or in an interactive mode, i.e. during
editing of a target language script. For the later case our
tool offers DSL code completions and embedded DSL doc-
umentation for a large number of IDEs which support the
Microsoft’s Language Server Protocol [8].
As a proof-of-concept we implemented a DSL for pro-

cessing and analysis of data tables. Our implementation can
generate target code for Python/Pandas or Apache PySpark.
The DSL code is embedded in Python comments and so DSL
and regular Python code can be mixed together (in the inter-
active tool usage). This property partially circumvents the
problem of limited DSL breadth. Our DSL allows a spectrum
of queries similar to a relational algebra. A preliminary eval-
uation shows that this DSL can express a majority of typical
data processing steps for the above-mentioned frameworks.

This paper has the following structure. Section 2 describes
the tool architecture, the approach and library for supporting
development of pipeline-oriented DSLs, and the character-
istics of the data table DSL. Section 3 contains a preliminary
evaluation of the tool and the data table DSL. Section 4 de-
scribes related work and Section 5 contains conclusions.

Tool availability and GPCE Demo Outline. The code ed-
itor part of NLDSL i.e. NLDSL.edit (with NLDSL.lib and the
data table DSL) is available as an online IDE (Theia) at
http://129.206.61.41:3000/. The GPCE Demo Outline is avail-
able as a web page at https://bit.ly/GPCEdemoNLDSL.

1https://www.rdocumentation.org/packages/dplyr/

Theia, Eclipse Che, …

Visual Studio Code

Intellij IDEA / PyCharm

Generic Code

Recommender

p
y
g

lsLSP DSL-based

Lang. Server

LSP

Library for

DSL dev.

textX

User-defined

DSLs

NLDSL.libNLDSL.edit

Figure 1. Architecture of our tool NLDSL.

2 Approach and Implementation
We describe here the tool architecture (Section 2.1), the key
characteristics of the DSL families supported by our tool
(Section 2.2, Section 2.3), and a proof-of-concept DSL for
data table processing for Spark/Pandas (Section 2.4).

2.1 Tool Architecture
Our tool NLDSL consists of (i) a library NLDSL.lib for ac-
celerated implementation of pipeline-oriented DSLs, and
(ii) an environment NLDSL.edit supporting DSL editing and
in-editor code generation for all IDEs supporting the Lan-
guage Server Protocol (LSP, [8]). NLDSL.lib is implemented
in Python and uses textX [9] for low-level DSL parsing. We
describe this tool component and how to use it for DSL imple-
mentation in depth in Section 2.2 and Section 2.3. NLDSL.lib
can be used alone (without NLDSL.edit). To generate target
code in this mode we provide a compiler as a part of the lib-
rary, which takes as input DSL file(s) and outputs generated
(Python) code. A demonstration of using NLDSL.edit alone
is included in the demo description.
NLDSL.edit uses NLDSL.lib and pygls [2], a generic Lan-

guage Server "skeleton", to provide code completions for
editors and IDEs supporting the LSP. In the current con-
figuration the DSL-code completions work for Python files
(extension .py). Since our DSL statements start with charac-
ter ’#’, they are treated as comments by Python interpreters.
In this way, users can mix DSL code and Python code in a
single file. Figure 1 gives an overview of our tool with both
components.

2.2 DSLs Structure
The DSLs supported by our tool consist of two types of
statements: evaluation statements, which are translated to
executable code, and definition statements, which are essen-
tially ad-hoc definitions of functions within a DSL. The latter
type of statement is explained in more depth in Section 2.3.3.

Figure 2 shows the general syntax of an evaluation state-
ment as a railroad diagram. A statement is commenced by
a DSL prefix ’##’ which allows to integrate DSL code into
regular Python code as pseudo-comments (other prefixes
like ’//’ for Java are possible). An optional assignment is
followed by an expansion ("call") of an internal DSL func-
tion (’DSL_Function’) (specified by a definition statement),
or by a chain (or a pipeline) of DSL operations. The op-
erations in a chain are separated by the pipe sign ’|’ and

http://129.206.61.41:3000/
https://bit.ly/GPCEdemoNLDSL
https://www.rdocumentation.org/packages/dplyr/

Agile Construction of Data Science DSLs GPCE ’19, October 21–22, 2019, Athens, Greece

Figure 2. Grammar of the evaluation statement.

comprise a mandatory initialization operations (’Init_Op’),
zero or more intermediate operations (’Intermed_Op’), and
an optional final operation (’Final_Op’). Each of these op-
eration types can be freely defined and implemented by a
specific DSL. Initialization operations specify an object or
data subject to processing. For convenience, we provide ini-
tialization operation ’on <identifier>’ which determines
an object/variable used as input for the pipeline.

The following listing shows some examples of valid gram-
mar statements for the DSLs described in Section 2.4.

x = on df | drop duplicates | groupy by df.data
apply sum

read 'myfile.csv' as csv | show
x = 5 + 7 % 2

2.3 Defining and Implementing DSLs
Essentially, a DSL implementation consists of a set of Python
functions corresponding to the desired pipeline operations
(i.e. ’*_Op’ in Figure 2). Such external rules (described in detail
in Section 2.3.1), are the backbone of the DSL and specify the
translation into a target language/framework. They must be
registered in a new class (inherited from ’CodeGenerator’)
which later serves as a code generator.

However, the DSL operations can be added and changed
only by the DSL developers. To support DSL end-users in
extending the DSL, we introduce DSL-internal functions
which can be defined ad-hoc within a DSL script. Such func-
tions summarize a chain of pipeline operations as a new DSL
element which behaves similar to an operation and allows
parameters (see Section 2.3.3).

2.3.1 Implementing External Rules (Operations)
As noted above, in a first step a DSL developer declares a code
generator class ’GenCls’, say (derived from ’CodeGenerator’).
For each desired operation she must implement (and then
register with ’GenCls’ or its instance) a Python function with
a following signature:

my_rule(code :str, args :list[str], env :dict[Any])

The first (mandatory) parameter is a string with already
generated code, the second a list of DSL-parameters and the
last is a dictionary containing environment variables (e.g.
the name under which a certain module has been imported).

The registration of such a function with ’gen’ can by done
on the class level (static member), or on the instance level:

GenCls.register_function(my_rule, "rule name") # cls
level

code_gen = GenCls()
code_gen["rule name"] = my_rule # obj level

DSL developers can use a dedicated decorator and a doc
string with a special format to utilize several useful features:

1. Converting of DSL-parameters ’args’ into a dictionary
mapping variable names to their values.

2. Providing a list of expected next valid tokens, used for
code recommendations and debugging.

3. Support for automated parsing of Boolean/comparis-
on/arithmetic expressions among the DSL-parameters.

4. Support for automated name inference when while
registering functions at code generator.

The format of such an enhanced function declaration is:

@grammar(doc :str, expr :ExpressionRule)
def my_rule(code :str, args :List[str], env

:Dict[str:Any]):
"""Grammar:

<name> (<var> | <var list> | <expr> |
<keyword>)*

Type:
<Operation_Type>

"""

The section "Grammar" describes the DSL-syntax of the
operation and its parameters. It can also contain additional
lines specifying a set of possible values for selected paramet-
ers. The "Type" section indicates whether it is an initializa-
tion, an intermediate, or a final operation (see Section 2.2).
This meta-information (sections "Grammar" and "Type") can
be provided in a string ’doc’ (the 1st decorator parameter) in-
stead in the regular doc string. The optional parameter ’expr’
specifies a class for parameter parsing (see Section 2.3.2).

For example, the following code defines and implements a
DSL-operation ’group by’ which emits Python/Pandas code.
The parameters ’$columns[$col]’ is a list of column names,
and parameter ’$aggregation’ takes a finite set of values:

gb_doc = """Grammar:
group by $columns[$col] apply $aggregation
aggregation := { min, max, sum, avg, mean, count }

Type:
Operation

"""

@grammar(gb_doc)
def group_by(code, args):

cols = list_to_string(args["columns"])
return code + ".groupby({}).{}()".format(cols,

args["aggregation"])
...
PandasCodeGenerator.register_function(group_by)

GPCE ’19, October 21–22, 2019, Athens, Greece A. Andrzejak et al.

Exemplary usages of this DSL operations are:

x = on df | group by df.col1 apply min
x = on df | group by df.col1, df.col2 apply mean

2.3.2 Customized Expression Parsing
Our tool library provides extended support for parsing the
DSL-parameters. In addition, it is possible to customize the
parsing of expression by deriving from the ’ExpressionRule’
class and passing the derived class to the grammar decorator.
The derived class needs to specify how tomap DSL-operators
to strings in the target language. Moreover, one can also set
whether an operator uses a postfix or an infix notation. The
following listing shows an example of such a customization:

class MyExpressionRule(ExpressionRule):
def __init__(self, expr_name, next_keyword):

super().__init__(expr_name, next_keyword)
self.operator_map["and"] = " & "
self.operator_map["+"] = " plus "
self.operator_map["in"] = ".isin"
self.operator_type["in"] =

OperatorType.UNARY_FUNCTION

2.3.3 Extending DSLs via Internal Functions
A programmer using a DSL can easily define chains of DSL
operations resembling parametrized functions on DSL-level.
Such definitions are part of the DSL script and used dur-
ing code generation. A definition consists of a declaration
followed by ’=’ and a chain of existing DSL operations or
DSL-functions on the right-hand-side. The grammar for the
left-hand side is given by (EBNF notation):

LHS ::= "#$" name (keyword | var | expr | varlist)*
varlist ::= "$" identifier* "[" (keyword | var)+ "]"
var ::= "$" identifier
expr ::= "!" identifier

The following listing shows a definition of an internal rule
’only pos’ and its usage in a DSL from Section 2.4:

#$ only pos $col = drop duplicates | select rows
$col > 1

N = on df | only pos df.colA | count

The generated codes for Pandas and Spark are, respectively:

N = df.drop_duplicates()[df.colA > 1].shape[0]
N = df.dropDuplicates().filter(df.colA > 1).count()

2.4 An Exemplary DSL for Data Tables
As a proof-of-concept for the utility of our tool we have
implemented a DSL for table analysis and processing under

Python. Our DSL can generate code for Pandas (a popular
package for series and dataframe processing in Python) or for
PySpark, i.e. Python bindings of Apache Spark (a framework
for processing of massive data sets). When using editor sup-
port (Component B in Section 2.1), the code generation target
can be specified via directives within Python comments (and
even mixed in the same file) like ’## target_code = spark’.
The utility of such a DSL is largely determined by the

design of the DSL, in particular, the power of the DSL (or
its“expressiveness”) in terms of common operations for the
target frameworks. To ensure a high level of DSL coverage,
we have analyzed several popular “cheat-sheets” for Pandas
and PySpark, as well as some tutorials for these frameworks.
Based on this analysis we designed a DSL which covers most
of the elements found in these sources, see Table 1.
Note that we do not attempt to cover all of the function-

ality in our DSL. Instead, we assume that developers will
implement more specific functions directly in Python.
Our DSL attempts to be easy-to-understand (or, in the

best case, even self-explanatory) yet concise. Thanks to code
completion, long keywords are acceptable, and so we pre-
ferred better readability in the DSL design than compact
but ambiguous keywords. The hurdle of learning and un-
derstanding the DSL is further reduced by explanations of
the commands provided in the list of suggestions, if editor
support (Component B) is used.
Table 1 shows the essential parts of our DSL. It covers

functionality e.g. for data I/O, selection, aggregation, joins,
set operations, various data transformations, and data in-
spection. In particular, the set of possible queries is similar
to those available in Codd’s relational algebra model [7].

3 Preliminary Evaluation of the Tool
A proper evaluation of the usefulness of our approach would
require a well-designed user study with a sufficient number
of participants. Due to time constrains, we refrain from per-
forming such analysis and focus instead on assessing the
effort of using the NLDSL to implement the two exemplary
for data table DSLs Section 3.1, covering the operations
defined in Table 1. Given a real-usage scenario we further
evaluate what fraction of the analysis and data processing
steps are covered by our exemplary DSLs Section 3.2.

3.1 Evaluation of NLDSL.lib
The exemplary data table DSL is implemented in 247 and
266 lines of Python-code, for Pandas and PySpark code gen-
eration respectively. As we implement the same set of oper-
ations in both Pandas and PySpark DSLs, they can share the
documentation used by NLDSL to define the new grammar
rules, specify types of arguments and illustrate the DSL us-
age with examples. This documentation comprises 412 lines,
used by both DSLs. For instance, the operation load from
is implemented in both DSLs as stated in Listing 1.

Agile Construction of Data Science DSLs GPCE ’19, October 21–22, 2019, Athens, Greece

3.2 Expressiveness of Data Table DSL
Due to the popularity and demand for data analysis in current
scientific landscape, tutorials for typical data analysis task
are very common in the web. For our evaluation we use a
popular DataCamp tutorial “Apache Spark Tutorial: ML with
PySpark”2. This tutorial has multiple topics, but we focus
only on the two topics within the scope targeted by our DSL:
data exploration and data pre-processing. The relevant part
of the tutorial contains 16 processing steps, i.e. smallest part
of the code which can execute on its own.

To evaluate our DSL in context of Spark, we use unchanged
source code from the tutorial. For Pandas, we manually trans-
late each processing step into Pandas code, which yields only
14 processing steps, as some steps (such as creating RDDs to
populate dataframes) are specific to PySpark. We do not use
(another) tutorial directly for Pandas as it was impossible to
find a tutorial with similar purpose/scenario as to the one
for Spark. Moreover, many introductory tutorials for Pandas
explain functions related to selecting individual values (e.g.
.loc and .iloc), and functions related to the (row) index
data structure of Pandas. Such functions make Pandas code
2https://www.datacamp.com/community/tutorials/apache-spark-tutorial-
machine-learning

Table 1. Overview of the DSL for data tables. Keywords are
in bold, and choices from a list are underlined.

Category DSL examples (prefix ## is omitted)
Table creation create dataframe from D with header ’a’, ’b’
I/O ops result = load from ’some_path.json’ as json

on df | save to ’some_path.csv’ as csv
Selection result = on df | select columns df.a, ’b’, ’c’

... select rows df.s == ’A’ or df.c1 > (14 + z)

... select rows df.c1 > 0 and df.c2 in [3, 5, 7]

... select rows df.c1 % df.c2 != 0
Aggregation result = on df | group by df.c1 apply avg

... group by df.c1, df.c2 apply count
Joins on df | join inner df2 on ’c1’, ’c2’

... join left df2 on ’c1’
Set ops on df | intersection df2

... difference df2

... union df2
Transform. result = on df | append column df.c1*5 as ’c5’

... on df | drop duplicates

... drop columns df.x, ’y’

... replace values old_value by new_value

... sort by df.c1 descending, ’c2’ ascending

... rename columns c1 to c2, d1 to d2

... change type of df.c1 to string
Inspection on df | show

... show schema

... count

... describe

... head 20
Options target_code = spark

target_code = pandas

Listing 1.Definition of the load from external rule in NLDSL
for Pandas and PySpark code translation.
LOAD_FROM_DOC = """Load a DataFrame from a file.

Examples:
1. x = load from "my_file.json" as json
2. x = load from "my_file.csv" as csv

Grammar:
load from $path as $type
type := { json, csv }

Args:
path (variable): A string containing the path to

a file.
type (variable): The type of the file.

Type:
Initialization

"""

Pandas extension (from PandasCodeGeneration)
@grammar(docs.LOAD_FROM_DOC)
def load_from(code, args, env):

read_fun = ".read_csv(" if args["type"] == "csv" \
else ".read_json("

return code + env["import_name"] + read_fun +
args["path"] + ")"

Spark extension (from SparkCodeGeneration)
@grammar(docs.LOAD_FROM_DOC)
def load_from(code, args, env):

return "{}.read.format('{}').load({})".format(
env["spark_name"], args["type"], args["path"])

fundamentally difficult to translate to other programming
paradigms or frameworks (e.g. SQL, Spark), and typically
make the code non-scalable. In our scenario, we assume that
a developer considers the scenario of massive data sets and
will avoid such functions right from the onset.

In our evaluation we attempt to express a basic processing
step with our DSL. For each such step, we estimate whether
it can be expressed by our current DSL design, or if our
DSL cannot express this step at all. Overall, our DSL fully
covers 12 out of 14 (85.8%) of Pandas processing steps and
14 out of 16 (87.5%) of PySpark processing steps. Four pro-
cessing steps (two in Pandas and two in PySpark) could not
be expressed or translated by our DSL, such as casting a
column to a particular Python type (e.g., .withColumn(...,
cast(FloatType())), not currently supported by our DSLs.

4 Related Work
Domains relevant to our work areDomain Specific Languages,
accelerated scripting and coding, and low-code data analysis.

https://www.datacamp.com/community/tutorials/apache-spark-tutorial-machine-learning
https://www.datacamp.com/community/tutorials/apache-spark-tutorial-machine-learning

GPCE ’19, October 21–22, 2019, Athens, Greece A. Andrzejak et al.

Domain Specific Languages (DSLs) [13], [23], [9], have
proven useful in a multitude of medium to large-scale pro-
jects by introducing highly readable and concise code with
support for higher-level operations. While the underlying
theories and scientific interest are still modest [23], [12],
[16], DSLs are becoming increasingly popular in industry
(for example, the industrial-grade database management sys-
tem SAP HANA uses internally over 200 DSLs). Concepts
related to DSLs are extensible languages like Racket [12], or
enhancing libraries by "syntactic sugar" as in SugarJ [10].

A particular flavor of DSLs are internal or embedded DSLs
which can seamlessly inter-operate with the underlying (typ-
ically general-purpose) language. However, internal DSLs
offer only limited range of syntax and are typically not sup-
ported by IDEs. Contrary to this, external DSLs admit almost
any syntax. Modern DSL engineering frameworks (Xtext
[5], textX [9], Spoofax [23]) significantly lower the cost of
developing such DSLs. Language workbenches (e.g. MPS
[6], Xtext [5]) complement and extend such frameworks by
providing editors with syntax checking and code completion
for created languages, and by facilitating DSL parsing and
code generation. This can greatly increase the acceptance of
new DSLs (see [11] for a detailed comparison).
The disadvantages of external DSLs are the difficulty of

interaction with (general-purpose) languages, and problems
if the DSL capabilities are not sufficient. In our approach
we generate code for a general-purpose language from an
external DSL during the editing process, which largely elim-
inates the interoperability barrier. We also implemented a
special Language Server to provide coding assistance to both
our DSL and the “embedding” general-purpose language.

Accelerating scripting and coding (and as a special case, end-
user development/end-user programming) comprises a mul-
titude of approaches from software engineering. The most
visible progress in this category stems from novel program-
ming languages, introduction of software processes such as
Scrum, proliferation of software testing, and advances in
development tools (including Intelligent Development Envir-
onments, or syntax/error checkers). Nevertheless, the impact
of the individual measures on programmers’ productivity
is hard to measure. Other noteworthy approaches include
program synthesis (discussed above), visual programming
via dataflow languages [21], block programming languages
[3], and DSLs [13, 24], or more generally Language-Oriented
Programming [12].

In the context of data analysis, dataflow languages [17, 21]
have gained some popularity via tools such as [1] or KNIME
[4]. Such approaches can greatly accelerate creation of small
data processing pipelines but do not scale for larger projects.

Low-code data analysis. Multiple research fields tackle the
challenge of making the process of data analysis and trans-
formation more user-friendly and accelerating scripting and
automation of processing. The essential directions are: visual
analytics [25], mixed-initiative systems [19], [26], facilitating

user involvement[27], learning data transformations by ex-
amples, [30], [20], [29], and data wrangling in various flavors
[28], [22], [31].

Data wrangling (or data munging) refers to the process of
interactive data transformations on structured or unstruc-
tured data. The most mature tool in this domain is Wrangler
[22] by Trifacta which is based on the concept of Predictive
Interaction [18]. Another popular tool is OpenRefine [32]
(originally GoogleRefine) which allows batch processing of
tabular data by menu selection and a DSL named GREL.

Learning data transformations by examples [30], [20], [29]
is a special case of program synthesis. Such approaches
(while still immature) offer a promise to greatly facilitate
complex data analysis, especially for users with no or little
programming skills. Several applications to data science exist
[15]: extracting relations from spreadsheets, data transform-
ations [20], and synthesizing regular expressions. So far the
most widespread application is the FlashFill approach [14]
as a component of Excel 2013+ and as ConvertFrom-String
cmdlet in PowerShell. We consider program synthesis as a
possible extension of our work.

5 Conclusions and future work
We proposed an approach and a tool for accelerated devel-
opment and editing of pipeline-oriented DSLs, which are in
particular suitable for data science scripting. Our approach
allows declaring and implementing individual DSL opera-
tions in a compact and easy fashion. In particular, DSL syntax
and certain properties are declared in Python doc strings.In
addition, we provide a mechanism to declare and expand
DSL-level functions which can be used to define new DSL
elements in an ad-hoc way. Our tool allows generating target
code from DSL in a "batch" mode (compiler-like), or during
editing of a target language script. For the later case we
provide DSL code completion based on the LSP protocol.
As a proof-of-concept we implemented a DSL for data

tables which can generate code in Python/Pandas, Apache
PySpark, or a mixture of them. This DSL has similar "ex-
pressibility" as a relational algebra. A preliminary evaluation
shows that this DSL can cover a majority of typical data
processing steps for the above-mentioned frameworks.

Our future work will include user studies with interviews
in order to verify our hypotheses how programmers develop
DSLs. We will also implement more code generation tar-
gets for our DSL, including Python/sklearn, deep learning
frameworks like TensorFlow and PyTorch, as well as other
languages like R (with dplyr/tidyR) and Matlab.

References
[1] 2018. Top 21 Self Service Data Preparation Software -

Compare Reviews, Features, Pricing in 2019. (May 2018).
https://www.predictiveanalyticstoday.com/data-preparation-
tools-and-platforms/

https://www.predictiveanalyticstoday.com/data-preparation-tools-and-platforms/
https://www.predictiveanalyticstoday.com/data-preparation-tools-and-platforms/

Agile Construction of Data Science DSLs GPCE ’19, October 21–22, 2019, Athens, Greece

[2] 2019. pygls, a Pythonic Generic Language Server. (2019). https:
//pypi.org/project/pygls/

[3] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn
Turbak. 2017. Learnable Programming: Blocks and Beyond. Commun.
ACM 60, 6 (May 2017), 72–80. https://doi.org/10.1145/3015455

[4] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel,
Tobias Kötter, Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel,
and Bernd Wiswedel. 2008. KNIME: The Konstanz Information Miner.
In Data Analysis, Machine Learning and Applications. Springer, Berlin,
Heidelberg, 319–326. https://doi.org/10.1007/978-3-540-78246-9_38

[5] Lorenzo Bettini. 2016. Implementing Domain Specific Languages with
Xtext and Xtend - Second Edition (2nd ed.). Packt Publishing.

[6] Fabien Campagne. 2016. The MPS Language Workbench Volume I:
The Meta Programming System (Volume 1) (3rd ed.). CreateSpace
Independent Publishing Platform, USA.

[7] E. F. Codd. 1970. A Relational Model of Data for Large Shared Data
Banks. Commun. ACM 13, 6 (June 1970), 377–387. https://doi.org/10.
1145/362384.362685

[8] Microsoft Corp. 2019. Language Server Protocol Specification. (2019).
https://microsoft.github.io/language-server-protocol/specification

[9] I. Dejanović, R. Vaderna, G. Milosavljević, and Ž. Vuković. 2017.
TextX: A Python tool for Domain-Specific Languages implementa-
tion. Knowledge-Based Systems 115 (Jan. 2017), 1–4. https://doi.org/10.
1016/j.knosys.2016.10.023

[10] Sebastian Erdweg, Tillmann Rendel, Christian KÃďstner, and Klaus Os-
termann. 2011. SugarJ: Library-based Syntactic Language Extensibility.
In Proceedings of the 2011 ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications (OOPSLA ’11).
ACM, New York, NY, USA, 391–406. https://doi.org/10.1145/2048066.
2048099 event-place: Portland, Oregon, USA.

[11] Sebastian Erdweg, Tijs van der Storm, Markus VÃűlter, Laurence Tratt,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, GabriÃńl Konat, Pedro J. Molina, Martin Pal-
atnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo
Solmi, Vlad Vergu, Eelco Visser, Kevin van der Vlist, GuidoWachsmuth,
and Jimi van der Woning. 2015. Evaluating and comparing language
workbenches: Existing results and benchmarks for the future. Com-
puter Languages, Systems & Structures 44 (Dec. 2015), 24–47. http:
//www.sciencedirect.com/science/article/pii/S1477842415000573

[12] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krish-
namurthi, Eli Barzilay, Jay McCarthy, Sam Tobin-Hochstadt, and Marc
Herbstritt. 2015. The Racket Manifesto. Technical Report. Schloss Dag-
stuhl - Leibniz-Zentrum fuer Informatik GmbH,Wadern/Saarbruecken,
Germany. – pages. https://doi.org/10.4230/LIPIcs.SNAPL.2015.113

[13] Martin Fowler. 2010. Domain Specific Languages (1st ed.). Addison-
Wesley Professional. 00681.

[14] Sumit Gulwani. 2015. Automating Repetitive Tasks for the Masses. In
Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’15). ACM, New York, NY,
USA, 1–2. https://doi.org/10.1145/2676726.2682621

[15] Sumit Gulwani. 2016. Programming by Examples (and its Applica-
tions in Data Wrangling). In Verification and Synthesis of Correct and
Secure Systems. IOS Press. https://www.microsoft.com/en-us/research/
publication/programming-examples-applications-data-wrangling/

[16] Gopal Gupta. 2015. Language-based Software Engineering. Sci. Com-
put. Program. 97, P1 (Jan. 2015), 37–40. https://doi.org/10.1016/j.scico.
2014.02.010

[17] Philipp GÃűtze, Hoffmann Wieland, and Kai-Uwe Sattler. [n. d.]. Re-
writing and Code Generation for Dataflow Programs. In GI-Workshop
on Foundations of Databases (24.05.2016). NÃűrten-Hardenberg, Ger-
many.

[18] Jeffrey Heer, Joseph Hellerstein, and Sean Kandel. 2015. Predict-
ive Interaction for Data Transformation. In Conference on Innovative
Data Systems Research (CIDR). http://idl.cs.washington.edu/papers/
predictive-interaction

[19] Eric Horvitz. 1999. Principles of Mixed-initiative User Interfaces. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’99). ACM, New York, NY, USA, 159–166. https://doi.org/
10.1145/302979.303030

[20] Zhongjun Jin, Michael R. Anderson, Michael Cafarella, and H. V.
Jagadish. 2017. Foofah: Transforming Data By Example. ACM Press,
683–698. https://doi.org/10.1145/3035918.3064034

[21] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. 2004.
Advances in Dataflow Programming Languages. ACM Comput. Surv.
36, 1 (March 2004), 1–34. https://doi.org/10.1145/1013208.1013209

[22] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer.
2011. Wrangler: Interactive Visual Specification of Data Transforma-
tion Scripts. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’11). ACM, New York, NY, USA, 3363–3372.
https://doi.org/10.1145/1978942.1979444

[23] Lennart C.L. Kats and Eelco Visser. 2010. The Spoofax Language
Workbench: Rules for Declarative Specification of Languages and IDEs.
In Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA ’10). ACM,
New York, NY, USA, 444–463. https://doi.org/10.1145/1869459.1869497
event-place: Reno/Tahoe, Nevada, USA.

[24] Tomaž Kosar, Sudev Bohra, and Marjan Mernik. 2016. Domain-Specific
Languages: A Systematic Mapping Study. Information and Software
Technology 71 (March 2016), 77–91. https://doi.org/10.1016/j.infsof.
2015.11.001

[25] Joseph MacInnes, Stephanie Santosa, andWilliamWright. 2010. Visual
Classification: Expert Knowledge Guides Machine Learning. IEEE
Comput. Graph. Appl. 30, 1 (Jan. 2010), 8–14. https://doi.org/10.1109/
MCG.2010.18

[26] Stephen Makonin, Daniel McVeigh, Wolfgang Stuerzlinger, Khoa Tran,
and Fred Popowich. 2016. Mixed-Initiative for Big Data: The Inter-
section of Human + Visual Analytics + Prediction. IEEE, 1427–1436.
https://doi.org/10.1109/HICSS.2016.181

[27] Protiva Rahman, Courtney Hebert, and Arnab Nandi. 2018. ICARUS:
Minimizing Human Effort in Iterative Data Completion. Proc. VLDB
Endow. 11, 13 (Sept. 2018), 2263–2276. https://doi.org/10.14778/3275366.
3284970

[28] Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s Wheel:
An Interactive Data Cleaning System. In Proceedings of the 27th In-
ternational Conference on Very Large Data Bases (VLDB ’01). Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 381–390.
http://dl.acm.org/citation.cfm?id=645927.672045 00411.

[29] Mohammad Raza and Sumit Gulwani. 2017. Automated Data Ex-
traction Using Predictive Program Synthesis. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA., Satinder P. Singh and Shaul
Markovitch (Eds.). AAAI Press, 882–890. http://aaai.org/ocs/index.
php/AAAI/AAAI17/paper/view/15034

[30] Calvin Smith and Aws Albarghouthi. 2016. MapReduce Program
Synthesis. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’16). ACM,
New York, NY, USA, 326–340. https://doi.org/10.1145/2908080.2908102

[31] Michael Stonebraker, Ihab F Ilyas, Stan Zdonik, George Beskales, and
Alexander Pagan. 2013. Data Curation at Scale: TheData Tamer System.
6th Biennial Conference on Innovative Data Systems Research (2013).

[32] Ruben Verborgh and Max De Wilde. 2013. Using OpenRefine (1st new
edition edition ed.). Packt Publishing. http://openrefine.org/

https://pypi.org/project/pygls/
https://pypi.org/project/pygls/
https://doi.org/10.1145/3015455
https://doi.org/10.1007/978-3-540-78246-9_38
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://microsoft.github.io/language-server-protocol/specification
https://doi.org/10.1016/j.knosys.2016.10.023
https://doi.org/10.1016/j.knosys.2016.10.023
https://doi.org/10.1145/2048066.2048099
https://doi.org/10.1145/2048066.2048099
http://www.sciencedirect.com/science/article/pii/S1477842415000573
http://www.sciencedirect.com/science/article/pii/S1477842415000573
https://doi.org/10.4230/LIPIcs.SNAPL.2015.113
https://doi.org/10.1145/2676726.2682621
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling/
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling/
https://doi.org/10.1016/j.scico.2014.02.010
https://doi.org/10.1016/j.scico.2014.02.010
http://idl.cs.washington.edu/papers/predictive-interaction
http://idl.cs.washington.edu/papers/predictive-interaction
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/1013208.1013209
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1109/MCG.2010.18
https://doi.org/10.1109/MCG.2010.18
https://doi.org/10.1109/HICSS.2016.181
https://doi.org/10.14778/3275366.3284970
https://doi.org/10.14778/3275366.3284970
http://dl.acm.org/citation.cfm?id=645927.672045
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15034
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15034
https://doi.org/10.1145/2908080.2908102
http://openrefine.org/

	Abstract
	1 Introduction
	2 Approach and Implementation
	2.1 Tool Architecture
	2.2 DSLs Structure
	2.3 Defining and Implementing DSLs
	2.3.1 Implementing External Rules (Operations)
	2.3.2 Customized Expression Parsing
	2.3.3 Extending DSLs via Internal Functions

	2.4 An Exemplary DSL for Data Tables

	3 Preliminary Evaluation of the Tool
	3.1 Evaluation of NLDSL.lib
	3.2 Expressiveness of Data Table DSL

	4 Related Work
	5 Conclusions and future work
	References

