
Learning-based Recursive Aggregation of Abstract
Syntax Trees for Code Clone Detection

Lutz Büch
Institute of Computer Science

Heidelberg University, Germany
lutz.buech@informatik.uni-heidelberg.de

Artur Andrzejak
Institute of Computer Science

Heidelberg University, Germany
artur.andrzejak@informatik.uni-heidelberg.de

Abstract—Code clone detection remains a crucial challenge in
maintaining software projects. Many classic approaches rely on
handcrafted aggregation schemes, while recent work uses super-
vised or unsupervised learning. In this work, we study several
aspects of aggregation schemes for code clone detection based on
supervised learning. To this aim, we implement an AST-based
Recursive Neural Network. Firstly, our ablation study shows the
influence of model choices and hyperparameters. We introduce
error scaling as a way to effectively and efficiently address the
class imbalance problem arising in code clone detection. Secondly,
we study the influence of pretrained embeddings representing
nodes in ASTs. We show that simply averaging all node vectors of
a given AST yields strong baseline aggregation scheme. Further,
learned AST aggregation schemes greatly benefit from pretrained
node embeddings. Finally, we show the importance of carefully
separating training and test data by clone clusters, to reliably
measure generalization of models learned with supervision.

Index Terms—Code Clone Detection, Abstract Syntax Trees,
Embeddings, Recursive Neural Network, Siamese Network

I. INTRODUCTION

Code clones can make up significant parts of large software
systems [1], [2]. This problem is likely to become even more
relevant in the future, due to today’s ease of online collabo-
ration and code distribution via open-source code repositories
[3], question-answering forums [4], and app stores [5]. Besides
clone detection, the notion of code similarity can be used in
other applications like bug detection [2], [6], [7], performance
prediction of code fragments [8], and information retrieval in
software contexts [9].

In 2007, three surveys [10]–[12] described, categorized and
evaluated the existing approaches to code clone detection. The
algorithms fell into the categories of text-based, token-based,
tree-based, PDG-based, metrics-based, and hybrid. The first
four categories allow for an increasing degree of variation
in the code fragments: from simple formatting differences to
renaming of variables, over reordering of statements and other
restructuring.

In recent years, more and more learning-based approaches
to code clone detection have been studied [13]–[18]. One
important aspect of learning-based techniques are embeddings
of code tokens, as learning-based models usually depend on
some continuous vector representation for input. Raw code
and its traditional derivatives come in different forms, however
always as a sequence, tree, or other graph of discrete tokens.

A recent study [13] comprehensively investigates the use-
fulness of different code representations and their combina-
tions. Embeddings based on identifiers, Abstract Syntax Trees
(ASTs), Bytecode and Control Flow Graphs are used for
code clone classification (and detection of clone type) both
in isolation, and as combined representations. One finding
indicates that using AST-based representations strikes the
best balance between precision and recall. Further, identifier-
based representations can serve to complement AST-based
representations.

In this work, we study representations derived from ASTs
by learning from a clone/non-clone supervision signal. We
use both AST node type and content (identifiers and literal
values) to create the node representation. We implement a
Siamese Network as a way to share weights of two instances
of Recursive Neural Networks, that aggregate the ASTs of two
given Java methods. We put a special focus on generalizability.
We show that if training and test sets of clone and non-clone
pairs are not separated by clusters, one does not measure the
model’s capability to generalize to other clone clusters.

We show that a strong baseline of aggregation is to simply
average all node vectors. We also compare different hyper-
parameter settings and model variants. We find that the most
important factor for a good model is a pretrained embedding.
We show how error scaling solves the class imbalance problem
of supervised code clone detection.

II. BACKGROUND

Embeddings in Software Engineering

Design of learning approaches requires additional care if the
entities of interest include sets of discrete tokens. These have
to be mapped to a representation that makes them accessible
to learning algorithms in an effective way, and that captures
the semantics of these tokens. Often, this representation is a
continuous vector of fixed length. Mappings of discrete tokens
to real-valued vectors of fixed length are called embeddings
or distributed representations.

Embeddings have found their way into the software en-
gineering research literature as a way of facilitating neural
network based models. Most embeddings in the software
engineering literature represent method names, instances of
API calls, bytecode or general code tokens [13], [16]–[21].
Others use word embeddings for natural language artifacts

[22], [23] or even mixed vocabularies of code tokens and
natural language words [24].

Many embeddings are directly pretrained with an instance
of the word2vec algorithm [19], [22], [23]. Others are trained
with graph embedding algorithms [13], derived from training
token-level Recurrent Neural Networks as language models for
code [13], [17], [25], [26]. They are used to encode sequences,
or the learned embeddings for the tokens themselves are used.
Some embeddings are not pretrained but are jointly learned
with the larger downstream task [20]. Sometimes, token-level
embeddings are aggregated to sequence-level representations
using recursive auto-encoders [13], [17], [25].

Researchers have also investigated the semantics captured in
these embeddings, either by vector arithmetic yielding word
analogies [19], [20] (as in the follow-up paper to word2vec
method [27]), or by plotting a neighbourhood-preserving 2D
projection [23]. In Section IV-H we present a qualitative
assessment of the proposed content embedding which exploits
such techniques.

Word2vec skip-gram

The word2vec [28] algorithm introduced in 2013 is currently
one of the most popular approaches for training embeddings.
It comes in two variants: continuous-bag-of-words and skip-
gram. In the skip-gram model, a shallow neural network is
trained to predict whether a given token fits in a given context.
What constitutes an acceptable context for a token is defined
by observing data in a corpus (e.g., natural language texts
or a code repository). If a token occurs in a context in the
data, it is deemed ”natural”, and thus, acceptable in terms
of the learning goal. Other, ”unnatural” contexts are forged
by altering natural contexts to generate negative training data.
This process is called ”negative sampling”.

In more detail, in the skip-gram model a shallow (3-layer)
neural network is trained to predict for a given token T the
probability for any other token in our vocabulary of being
in the context of T . The hidden layer of this network has k
neurons, and the training adjusts the values of their (input-
side) weights. Thus, in total, an n × k matrix w is learned,
where n is the size of the vocabulary. The embedding for the
token T is represented by a vector with k components, namely
a row of w corresponding to the token T .

Recursive Neural Networks

Recursive (and Recurrent) Neural Networks differ from
feed-forward Neural Networks in that the implicit computation
graph is not static and the input is not of fixed shape. Instead,
the mode of execution is iterative and goes over the whole
input structure. In a Recurrent Neural Network (RNN, some-
times RtNN), inputs are sequences of tokens, and the RtNN
reads in one token at a time, while updating an internal state.
In a Recursive Neural Network (RNN, sometimes RvNN), the
computation graph mirrors exactly the structure of the input
tree. In the execution, one node is read at a time, while the
states of the children are combined and updated in the current
node. Therefore, the states are initialized at each leaf node.

As a consequence, the computation tree will become as deep
as the input trees.

Long Short Term Memory

In Deep Learning, there is the danger of exploding and
vanishing gradients [29], because of high numbers of subse-
quent multiplications introduced by backpropagation through
many layers. Memory-based models like the Long Short Term
Memory unit (LSTM) [30] and Gated Recurrent Unit (GRU)
[31] have shown to circumvent the problem of vanishing
and exploding gradients. An LSTM implements an explicit
memory structure that the network learns to use to model
long term dependencies in the data. There are several gates
that interact to compute a new state from input and a previous
state. These gates can ”trap” the error and prevent unwanted
divergence. The LSTM was originally conceptualized only for
Recurrent Neural Networks which model sequential data, and
only then generalized to Recursive Neural Networks [32] (i.e.
tree topology). In this work we assume the latter scenario.

AST-based Code Clone Detection

As one baseline in our evaluation, we use the well-known
AST-based algorithm Deckard [33]. This algorithm recursively
aggregates tree patterns in ASTs until finally one characteristic
vector at the root of the tree represents the whole tree. Deckard
discards nodes of irrelevant type and all node content such
as identifier names. The goal of Deckard was a robust and
scalable code clone detection algorithm.

The theory developed in [33] shows that the Euclidean
distance of Deckard’s vectors approximates the tree edit dis-
tance of the according pair of ASTs. In our evaluation against
Deckard as a baseline, we discovered that the comparison of
Deckard’s vectors performs significantly better (in terms of
AUC), when one uses the cosine similarity instead. Note that
this comparison is not the same as the final output of Deckard,
which involves blocking and locality sensitive hashing. We
intercepted the Deckard pipeline at the point where it outputs
the tree vectors. Also, Deckard was designed to discover
clones at varying levels of granularity, whereas our test data
only defines clones at method level.

III. APPROACH

We use a Siamese Network [34] at the top level of our
recursive aggregation approach. It compares the output of
two identical Recursive Neural Networks with shared weights
that encode two code fragments. The Siamese Network tries
to maximize the cosine similarity for clones and decrease
the cosine similarity for non-clones (attempting to make the
similarity at least orthogonal). Figure 1 shows a schematic
overview of one forward and one backward pass while training
the Siamese Network. The error that is observed in the training
set is backpropagated to the two instances of the Recursive
Neural Network corresponding to the two trees.

ASTl ASTr

RNN RNN

E = error(cos(hl, hr), label(l, r))

h l

h
r

(∇E
) l (∇

E)r

Fig. 1. The Siamese network during training

A. Recursive Neural Network

Our Recursive Neural Network is designed to process ASTs.
These are normalized to binary trees where each node holds
two vectors. In Section IV-C we detail how the tree structure is
derived and normalized. The two vectors represent one discrete
label each - the node type and node content.

With node types we denote the abstract names that occur
when deriving an AST, like ”StringLiteral”, ”InfixExpression”,
”ForStatement” or ”FieldAccess”. These are defined by the
grammar the parser uses. We define node contents as values
that reflect the user-defined entities, like variable identifiers,
class or method names or literal values. E.g., ”Hello, World!”,
”HashMap”, ”false”, ”1024” or ”getParent”. Some of the
content adheres to a grammar of its own (e.g., variable names
in Java), while in other contexts it can be arbitrary (e.g., the
content of a StringLiteral). These values are mapped to fixed
length real vectors with the help of a lookup table. In Sections
IV-C and IV-E we explain the details of the lookup tables and
how we pretrain their parameters to obtain useful embeddings.

B. LSTM

We build on the definition of the n-ary tree-structured
LSTM (conceived for constituency trees), as well as the
original Torch7 implementation1 of [32]. In our case, the trees
are binary, there are (up to) two input vectors at every node,
and only one output at the root node.

1) Forward pass: Our Recursive Neural Network operates
as follows when reading in a tree (see Fig. 2). The single
LSTM unit traverses the tree. At each node, it combines its
own output at the children nodes, and the node type and
content of the current node. For the child nodes, it receives the
hidden states hl, hr and the cell states cl and cr. The node type
and node content are fed in the respective lookup tables that
output the according vector representations xt and xc. These
six vectors cl, hl, cr, hr, xt and xc are the input to the LSTM
cell and will influence the hidden state h and cell state c of
the current node as follows (i, fk and u are the input, forget
and update gates of the LSTM, respectively):

1https://github.com/stanfordnlp/treelstm

...

InfixExpression

!=

... ...

c,
h

c l
, h

l

c
r , h

r

LSTM

cl, hl, cr
, hr

c, h

embeddings

”!=”

”InfixExpr.”

x
t
, x

c

Fig. 2. Flow of data during evaluation of the RNN

i = σ

∑
p=t,c

W (i)
p xp +

∑
p=l,r

U (i)
p hp + b(i)

 (1)

fk = σ

∑
p=t,c

W (f)
p xp +

∑
p=l,r

U (f)
p hp + b(f)

 , (2)

where k ∈ {l, r}

u = tanh

∑
p=t,c

W (u)
p xp +

∑
p=l,r

U (u)
p hp + b(u)

 (3)

c = i� u+
∑
k=l,r

fk � ck (4)

h = tanh(c). (5)

Note that this variant does not include an output gate,
since this simpler variant performed better in our preliminary
experiments. We base our implementation on the original
implementation of [32].

Starting at the leaves, the network recursively aggregates the
whole tree into a single vector representation. Each missing
child or node content is simply represented as a zero vector.
I.e., for a leaf node, the vectors cl, hl, cr and hr are all zero.
The vector representation of the tree is the hidden state vector
h of the LSTM at the root node.

2) Backward pass & weight update: When two trees ASTl,
ASTr have been processed by the Recursive Neural Network,
the Siamese Network will determine the error compared to
the desired outcome (see Fig. 1). It will compute the relative
contribution of each dimension for both trees and feedback
these errors to the respective instances of the Recursive Neural
Network:

error(s, l) =

{
1− s l = clone
max(0, s−m) otherwise

(6)

where s = cos(hl, hr) and l = label(l, r). The margin m is
set to 0 by default. In the evaluation we explore other values
for m.

After repeating this for many pairs, the Recursive Neural
Network can average the error gradient at each output dimen-
sion for every AST in the training set. This error gradient
is then used to compute the error gradient with respect to
the weights of the network. This is done by the process of
backpropagation through structure [35]. Finally, with this in-
formation, any optimization algorithm can take over updating
the weights in order to minimize the error. In Section IV-G
details our particular choices for the optimization parameters.

IV. EVALUATION

A. Data collection

To implement our supervised learning schema, we need
a supervision signal. We do not learn to predict a label for
every tree (like cluster id), but we consider tree pairs as the
data instances. We label each pair with clone or non-clone.
To obtain ground-truth data for training and testing, we turn
to the well-known BigCloneBench benchmark dataset [36] of
method-level Java code clones.

For each clone cluster, we assemble methods that are
confirmed as mutual clones, with a minimal confidence of
2 or greater. Here minimal confidence refers to the attribute
of the clone data table in BigCloneBench. It is the minimum
difference in true positive vs. false positive votes by the judges
for a given clone pair. We exclude trees with more than 1000
nodes or with a depth greater than 28, because of limitations
of our implementation. This eliminates 227 candidates (94
because of depth, 48 because of size, 85 because of both).
We limit each clone cluster to 20 representative methods and
discard clusters that have less than 5 methods after filtering
for minimal confidence.

We only add methods that are not isomorphic to another
method that is already in the cluster, with respect to their AST
representation after pre-processing. These would only result
in trivial matches, since they would necessarily always have
the same vector representation. Note that this automatically
removes all Type-1 code clones from both training, validation
and test data, since these correspond to pairs of isomorphic
ASTs.

This results in 609 methods distributed over 33 clone clus-
ters. The ratio of Type-4 clones (as defined in BigCloneBench)
in our data is 93.3%. We split this data into training, validation
and test sets, such that methods of the same clusters belong to
the same set. We use the ratios of 2/3 of clusters for training,
and 1/6 for validation and testing, respectively. These ratios do
not translate to the numbers of clones and non-clones, because
of the combinatorics involved and since clusters do not have
the same size. For cross-validation, we assemble three different
splits of the data with non-overlapping validation and test sets
(see Table II).

Importantly, this split is along the lines of clone clusters,
not only individual pairs. We can only hope to measure real
generalizability if the methods we evaluate on are not the same
methods we trained our model on. Moreover, they should not
even originate from the same cluster, or we run the risk that the
model will pick up on patterns within a cluster, that may not

be transferable to other clusters. This could bias the evaluation
and over-estimate the performance. To make this point very
clearly, we included the alternative mode of evaluation which
does not do this careful distinction, see Section IV-H.

B. Imbalanced classes

Because of the combinatorial way of defining clones and
non-clones, non-clones quickly outnumber clones by orders of
magnitude. If we add all pairs to a training set despite of this
fact, we end up having very imbalanced classes. This can lead
to suboptimal learning, since the network is mainly punished
for allowing any degree of similarity to non-clones, while the
reward for yielding high similarity for clones is marginal. One
way of addressing this issue is to downsample the non-clone
class, as proposed in [18].

We do not choose to perform up- or downsampling to
address this imbalance, however. Instead, we downscale the
errors for non-clones. The most costly operation are the for-
ward and backward passes over the ASTs by the RNN, which
is unavoidable. The passes through the Siamese network,
however, are negligible in cost. That provides the opportunity
to consider all pairs without great cost and therefore exploit
more information from the errors.

Consequently, to address the class imbalance, we scale the
errors occurring when considering non-clones such that they
have the same magnitude as those coming from clones. We
do so by dividing the errors occurring for non-clone pairs by
the ratio of number of non-clones to clones.

Different from the relatedness data from the NLP domain
used in [32], our training data considers every possible pair,
since we can deduce the label for a pair by membership in
clusters. Therefore, we deviate from the mini-batch gradient
descent implementation of [32] and implement learning with
gradient descent - computed on the entire epoch of data.

C. Data preprocessing

We parse the raw Java source code with the Eclipse Java
development tools (JDT) to obtain the AST trees. We make
three modifications before using these ASTs (see Fig. 4). First,
we cut out the node that carries the method name, to make
sure the model cannot rely on the method name.

Second, we introduce additional nodes to obtain an equiv-
alent binary tree. For a node with more than two children,
we first halve the number of children. We assign the bigger
half to a new left child, and the others (if more than one) to
another new right child node. We repeat this step recursively
for both children, as long as the smaller set of children
still exceeds two. For an example with five children, refer
to node MethodDeclaration in Fig. 4. Note that the sixth
child, SimpleName[”main”], is discarded. By this operation,
we introduce additional depth of dlog(n)e − 1 at a node with
n children. This makes the trees necessarily bigger and deeper
(see Table I). Note that Table I shows the statistics w.r.t. all
parsed trees, not the final selection of 609 trees.

Finally, we map rare node contents to a generic UNKNOWN
token. The node contents obey a Zipf distribution - there

public static void main(String args[]){
System.out.println("Hello, World!");

}

Fig. 3. Hello World code
MethodDeclaration

Modifier

public

Modifier

static

Prim.Type

void

SimpleName

main

SingleVar.Decl.

SimpleType

SimpleName

String

SimpleName

args

Block

Expr.Statement

MethodInvoc.

Qualif.Name

SimpleName

System

SimpleName

out

SimpleName

println

StringLiteral

Hello, World!

MethodDeclaration

MethodDecl.Ext

MethodDecl.Ext MethodDecl.Ext

Modifier

public

Modifier

static

Prim.Type

void

SingleVar.Decl.

SimpleType

SimpleName

String

SimpleName

args

Block

Expr.Statement

MethodInvoc.

MethodInvoc.Ext

Qualif.Name

SimpleName

System

SimpleName

out

SimpleName

println

StringLiteral

<UNK>

Fig. 4. AST tree of Hello World code, before and after preprocessing

TABLE I
STATISTICS OF TREE SIZES BEFORE AND AFTER BINARIZATION

Node counts Tree depths
Original Binarized Original Binarized

min 13 15 5 7
5% 43 50 7 10

25% 80 93 9 13
median 130 151 11 16
average 203.98 240.66 11.81 17.16

75% 220 259 13 20
95% 577 681 19 28
max 6,554 8,117 55 70

are some very frequent contents, like ”float” or ”true”, and
many one-off contents, like ”Mail was recorded successfully.”.
There are 32k distinct contents, where 21k occur in just one
method each (29k in one cluster each), another 5k in exactly
two methods. We discard any token that occurs in less than
6 code clone clusters or in less than 50 clone pairs within
any cluster. This leaves us with 1032 contents of the initial
32k. This prevents the model from overfitting by memorizing
certain contingencies.

D. Quality metric AUC

For our evaluation we use Area Under the Curve (AUC) for
the Receiver Operating Characteristic (ROC). AUC computes
the integral of the function mapping false positive rates to
the corresponding true positive rate for a given ranking of
instances. Here, we order the pairs of methods by the cosine
similarity of their representation vectors. AUC allows for
another, more intuitive interpretation: it is the probability of

ordering a randomly drawn pair of one clone and one non-
clone correctly. That is, assigning a higher similarity score to
the clone pair than to the non-clone pair. Such AUC gives
us a good overall summary of the quality of the vectors, in
terms of how well their similarity is able to separate the clone
and non-clone pairs. In addition, it does not require a decision
threshold, like precision, recall or F -measure do. So it is a
good metric to estimate just the quality of the representations,
because it is not influenced by any subsequent heuristic that
picks a decision threshold.

Note that our study systematically under-estimates the per-
formance in a real world application. Since we collect our data
to filter out trivial clones resulting from matching isomorphic
trees, we never encounter Type-1 code clones. This is on
purpose, since Type-1 clones are trivially handled by any AST-
based approach. The vast majority of clones in our data are
Type-4 clones (93.3%). See [36] for a description of clone
types.

E. Pretraining embeddings

In order for an AST to be consumable by a Recursive
Neural Network, its nodes have to be mapped to vectors. This
problem has been faced for a long time by the NLP (Natural
Language Processing) community. The lookup tables that map
the discrete values of node type and content to real vectors,
do not necessarily need any attention, other than setting an
arbitrary dimensionality.

Similarly as the weights of the LSTM unit, they can
be updated to a useful state by the backpropagated error.
However, to speed up learning, it makes sense to initialize
their values in a useful way. In the ablation study in Section
IV-H, we compare the performance of the RvNN model with
and without pretrained embeddings. See Section II for existing
work on embeddings in Software Engineering.

The word2vec approach [28] has been shown to work well
in NLP contexts and is able to capture semantics in a way
that can be reflected in vector arithmetic [27]. In particular,
word2vec makes sure that tokens that can replace each other
in many naturally occurring contexts will end up with similar
representations. This provides the network with a starting
point to generalize beyond arbitrary and insignificant naming
choices (e.g., ”dir” versus ”path”). It also can help to account
for the variation in Type-2 code clones which may differ
in identifier names and literal values, in addition to trivial
formatting variations.

We use the word2vec skipgram model and make three
modifications. These are motivated by the relative benign
nature of programming code, as compared to natural language.
Code underlies a well-defined grammar, therefore we can
always parse it into an AST tree. We use this fact to regularize
the contexts that are extracted from the data to train the
skipgram model.

First, we fix the context size and view contexts as ordered
tuples, rather than bags of tokens. Second, in the case of node
types, we define the context not by a window, but by the local
neighborhood of the node (parent, children). That means that

TABLE II
SPLIT OF SUPERVISED DATA IN TRAINING, VALIDATION AND TEST SET OF CLUSTERS IN THREE WAYS FOR CROSS-VALIDATION

Fold Training clusters Validation cl. Testing cl. # Training pairs # Validation pairs # Testing pairs

0
4, 5, 6, 7, 10, 11, 12, 13,
14, 15, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 29

39, 43, 45,
42, 41, 38

33, 32, 30,
31, 34, 36

3,277 pos.
64,619 neg.

1,140 pos.
6,000 neg.

1,140 pos.
6,000 neg.

1
4, 5, 6, 7, 10, 11, 12, 13,
14, 15, 31, 32, 33, 34, 36,

38, 39, 41, 42, 43, 45

23, 30, 29,
26, 25, 24

22, 21, 20,
19, 17, 18

3,482 pos.
69,289 neg.

1,070 pos.
5,600 neg.

1,005 pos.
5,100 neg.

2
18, 19, 20, 21, 22, 23, 24,
25, 26, 29, 30, 31, 32, 33,
34, 36, 38, 39, 41, 42, 43

11, 12, 13,
14, 15, 17

4, 5, 6,
7, 10, 45

3,920 pos.
82,400 neg.

841 pos.
4,109 neg.

796 pos.
3,482 neg.

there is an ordered context of three elements. In the case of
node contents, we use an ordered context of four elements
(two preceding and two succeeding tokens). Finally, the total
possible number of positive and negative samples is relatively
small. Therefore, we consider its entirety, instead of statistical
sampling and smoothing w.r.t. the relative frequencies.

F. Baselines

We first compare the supervised learning of representations
against a very simple approach which exploits the pretrained
embeddings. In this approach every AST is represented by
the average over all of its node vectors, and compared to
the representation of other ASTs by cosine similarity. This
approach is very cheap, easy to understand and does not
require further learning, given the pretrained embeddings.

We also compare our algorithm against the well-known
Deckard code clone detection tool [33]. An important com-
monality with Deckard is that our algorithm summarizes ASTs
to a single vector of fixed length to make them comparable
by a similarity measure. That makes it possible to evaluate
both with the aggregate quality metric of AUC. Five of the
609 trees in our data were not parseable by Deckard.

Note that we do not use the whole Deckard clone detection
pipeline (with blocking, LS hashing, . . .), but solely the
pipeline part for computing the Deckard vector representation
of a given Java fragment. Also, Deckard is designed to dis-
cover cloned code fragments at different levels of granularity.
Our evaluation uses only code clones from BigCloneBench,
which are clones on the method level. We consider different
methods with the same AST as identical, since these Type I
clones would only mean trivial clones for both our approach
and Deckard. Thereby, we under-estimate the overall perfor-
mance to detect clones, for both Deckard and our approach.

We observed that the Deckard vectors yield a better sepa-
ration of clones from non-clones if cosine similarity is used
instead of the intended Euclidean norm. For this reason, we
report both performances.

Note that the baseline approaches do not require (super-
vised) learning. For the sake of compatibility, we evaluate
them on the same three test sets we constructed for the
supervised cross validation.

TABLE III
THE PERFORMANCE W.R.T. DIFFERENT DIMENSIONALITIES; BASELINES

dim. #params AUC0 AUC1 AUC2 ∅AUC
300 752,294 0.799 0.771 0.903 0.824
200 345,094 0.766 0.861 0.876 0.834
150 201,494 0.764 0.841 0.929 0.845
100 97,894 0.690 0.840 0.857 0.795
50 34,294 0.613 0.817 0.793 0.741
30 20,054 0.588 0.768 0.783 0.713

Emb. ∅ 14 10,694 0.784 0.752 0.885 0.807
D. cos. 300 – 0.565 0.746 0.798 0.703

D. Eucl. 300 – 0.543 0.653 0.602 0.599

TABLE IV
THE PERFORMANCE FOR DIMENSIONALITY 150 W.R.T. OTHER CHANGES

#params AUC0 AUC1 AUC2 ∅AUC
10×neg. scal. 201,494 0.744 0.817 0.912 0.824

margin m = 0.9 201,494 0.750 0.793 0.885 0.810
Emb. ∅ (14D) 10,694 0.784 0.752 0.885 0.807

margin m = 0.5 201,494 0.726 0.813 0.856 0.798
with output gate 249,194 0.700 0.763 0.822 0.761

no pretraining 201,494 0.668 0.807 0.763 0.746
Unaware split* 201,494 0.990* 0.997* 0.991* 0.993*

G. Hyperparameters

We follow the choices in the implementation of [32]. We
employ the learning rate of 0.05, and a separate learning
rate for the embeddings of 0.1. As an optimizer, we use
adagrad. A difference to [32] is that we implement gradient
descent instead of mini-batch gradient descent, as explained
in Section IV-B.

We run each experiment for 500 epochs. We use the eval-
uation of AUC on the validation set to retrospectively choose
the best performing model state. However, the performance on
the validation set can sometimes make chaotic jumps in the
first few dozen epochs. Therefore, we exclude the first 100
epochs from consideration.

The standard hyperparameters for our experiments are as
follows. The node content embedding is 10-dimensional, the
node type embedding 4-dimensional. We initialize both with
separate word2vec-like pretraining (see Section IV-E). The
dimensionality of hidden and cell states is 150 per default.
Below, we report the results for runs with one changed
hyperparameter at a time.

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

!
!=

%
&

&&

'

)

*

+

++
+=

,,

-
--

.

/

0
1

10
100

1000
1024

11

12

1314

15
16

17

2

20
200

24

25

256

3

30
32

4

5

50

500

6

60

7

8

9

::

;

<
<=

=

==>
>=

ActionEvent

ArrayList

Arrays

Boolean

BufferedInputStream

BufferedOutputStream
BufferedReaderBufferedWriter

ByteArrayInputStream

ByteArrayOutputStream

Calendar

Class

ClassNotFoundException

Collection

Collections

Color

Component

Constants

DEBUG

Date

Document

Double

E
EMPTY ERROR

ERROR_MESSAGE

Element

Entry

Enumeration

ErrorException

FileFileInputStream

FileNotFoundException

FileOutputStream

FileReader

FileWriter

Float

HashMapHashSet

HttpServletRequest

HttpServletResponse

IOException

IllegalArgumentException

IllegalStateException

Image

InputStream

InputStreamReader

Integer

InterruptedException

Iterator

JOptionPane

LOGLOGGER Level

LinkedList

List

LogLogger

Long

MalformedURLException

Map

Math

Message

Method

N

Node

NullPointerException

NumberFormatException

Object

OutputStream

Override

PrintWriter

Properties

Runtime

RuntimeException

SEVERE

SPACE

SQLException

ServletException

Set

SimpleDateFormat

String

StringBuffer

StringBuilder

StringTokenizer

SuppressWarnings

System

Thread

Throwable

URL

UTF-8

Utils

Vector

"

]

_

a

action

add

addElement

address

append

args

arraycopy

b

boolean

br

bufbuffer

byte

c

charcharAt

clear

close

cmd

command

compareTo

concat

config

connect

contains

content

context

copy

count

counter

create

createNewFile

currentTimeMillis

d

data

date

debug

delete

description

dest
dir

dispose

doc

done

double

e

e1
e2

element

elementAt

encode

end

endsWith

entries

entry

equals

equalsIgnoreCase

err

error

event
evt

ex

exc

exception

execute

exists

exit

f

false

field

file

fileName

filenamefiles

final

find

fis

float

flush

forName

format

fos

found

g
get

getAbsolutePath

getAttribute

getBytes

getClass

getClassLoader

getData

getDefault

getDescription

getFile

getId
getInputStream

getInstance
getInt

getKey

getLength

getLogger

getMessage

getName

getOutputStream

getParameter

getParent

getParentFilegetPath

getProperty

getResourceAsStream

getRuntime

getSize

getSource

getString

getText

getTime

getType

getValue

getWidth

h

hasMoreElements

hasNext

height

host

i

id

in

index

indexOf

info

init

input

instance

int

intValue

invoke

io

ioe

is

isDebugEnabled

isDirectory

isEmpty

isFile

it

item

iter

iterator

j

java

javax

k

key keySet

keys

l

lang

lastIndexOf

len

length

line

list

load

location

loglogger

long

m

matches

max

message

min

mkdirs
mode

msg

n

name

newInstance

nextnextElement

nextToken

node

o
obj

object

ok

open

org

os

out

output

p

params

parent

parse

parseInt

parser

password

path

port pos

print

printStackTrace

println

private

props

protected
public

put

query

r

random

read

readLine

reader

remove

replace
replaceAll

reqrequestresresponse
result

results

ret

root
row

run

s

save

sb

separator

session

set

setContentType

setName

setProperty

setSize

setText

setValue

setVisible

severe

short

show

showMessageDialog

size

sleep
sort

source

split

src

st

start

startsWith

static

status

store

str

substring

synchronized

t

table

target

temp

test

text

time

title

tmp

toArray

toByteArray

toLowerCase

toString

toURL

toUpperCase

token

trace

trim

true

type

u

unchecked

update

url user
util

v

val

value

valueOf

values

version

void

w

warn

warning

width

write

writer

x

y

|

||

Fig. 5. T-SNE projection of content embedding vectors

H. Results

We evaluate each model by cross-validating with the avail-
able data. See Table II for the three different splits. We report
the AUC on each test set, that is evaluated on the best model,
as measured on the validation set (see Section IV-G). Finally,
we average these three AUC values to get a measure for the
overall performance.

Influence of dimensionality: In Table III we list the result
of running experiments with varying dimensionality for the
hidden and cell states h and c. The matrices U

(∗)
p grow

quadratically in size with growing dimensionality, increasing
the total number of parameters quickly.

More parameters help to converge to a vector representation
that implies similarities for method pairs that reflect more
closely the clone/non-clone relation. The AUC on the training
data itself converges to about 0.92 up to 1.00, over all
experiments. Note that the training does not optimize the
model for AUC directly, but for high cosine similarity for
clones and low similarity for non-clones. At a certain amount

of complexity, the model is able to overfit to the particularities
in the training data to such a degree, that it is to the detriment
of the performance on unseen clone clusters. The tipping point
seems to be a dimensionality of about 150. Before and after
that point, performance degrades.

The reported parameters include 364 parameters for the
4D embedding of 91 node types and 10,330 parameters for
the 10D embedding of the 1,032 node contents and the
UNKNOWN token. In most cases, the number of these weights
is small compared to the LSTM weights. However, in the case
of the 50D or 30D models, these numbers actually are of the
same order of magnitude as the LSTM weights.

Influence of embeddings: To measure the impact of pre-
training the node type and node content embeddings we ran
an experiment in which the pretraining was skipped. Instead,
the lookup tables where initialized with normally distributed
random numbers. Table IV shows the impact of the pretraining
of embeddings. The average performance drops from 0.845
to only 0.746 AUC. We included also the baseline that uses

the pretrained embeddings (”Emb. ∅ (14D)”). It can surpass
many of the non-optimally configured models. Especially, it
outperforms the otherwise optimally configured model, that
starts training with no pretrained embeddings. From this
comparison we conclude that a good pretrained embedding
has a higher impact on performance than a complex model on
top of it.

Variation of network layout: In Section III-B1 we intro-
duced the definitions for our LSTM variant which does not
use an output gate. We ran an experiment to evaluate the
influence of an additional output gate. The LSTM is changed
by introducing the two following equations, one overriding the
former definition of h:

o = σ

∑
p=t,c

W (o)
p xp +

∑
p=l,r

U (o)
p hp + b(o)

 (7)

h = o� tanh(c) (5*)

These definitions introduce a significant number of parameters
and the model with an output gate performs much worse. The
number is not as high as in the 200D or 300D models, but the
internal structure of this LSTM variant is more convoluted.
Apparently this is enough to overfit to the training data.

Variation of the error function: We observed in our prelim-
inary experiments that the class imbalance between the classes
clone and non-clone does indeed have an adverse effect on the
learning progress. All above experiments use the error scaling
discussed in Section IV-B. We tried an experiment with a
scaling factor of 10. That is, we add a factor of 10 to the down-
scaled error for non-clones. This setting is an intermediate
between full scaling and no scaling. Full scaling works best, as
seen in Table IV, but the learning curve indicates convergence
is faster and more stable for non-clone errors scaled by 10.

A similar observation can be made when varying the margin
m from Equation 6, which is set to 0 per default. The
performance is not optimal for the other values, but we get
faster convergence and, in the case of the moderate value
m = 0.5, more stable learning curves.

Importance of cluster-aware data splits: In supervised
learning of code clones, individual labeled instances are pairs
of code fragments. We noted in Section IV-A that we care-
fully split our labeled data into training, validation and test
sets, based on clusters. Therefore, each method of a given
cluster will only appear in pairs that belong to either training,
validation or test set. In this sense, the splitting is aware of
the clusters the methods belong to. We decided to use this
approach as otherwise we would get an overestimation of the
performance on unseen data.

We conducted an experiment to provide evidence for this
claim. We created three new splits of the data into training,
validation and test sets - this time, simply randomly drawing
pairs of methods. However, the pairs are still drawn only
and kept the same over the training epochs. Also, each pair
only occurs in either training, validation or test set, or is not
drawn at all. We made it so that the numbers of positive and

negative pairs coincide with the numbers in Table II. So for the
first split, the training set would consist of 3,277 positive and
64,619 negative pairs. Just this time, the clones are drawn from
all 33 clusters, and the non-clones may have methods from any
two of the 33 clusters. Since this experiment is conducted on
different data, we distinguish it by marking the results with
asterisks.

Fig. IV shows that the performance in terms of AUC is in
fact much higher than in the other cases (see row labelled
”unaware split”). These values are actually on average equal
to the AUC measured on the training set. The reason for this
is that here, the model is trained on the same clusters as it is
evaluated on. Whereas if we ensure that the test phase only
includes unseen clusters, the AUC in testing cannot reach the
AUC of the training. We conclude that evaluating supervised
code clone detection on the same clusters gives misleadingly
good results, that cannot translate to unseen clone clusters, as
shown by the other experiments.

Qualitative assessment of content embedding: The pre-
trained embeddings offer a considerable performance gain
and even make for a good baseline, when simply averaging
these vectors over all nodes. A qualitative evaluation described
below shows that these embeddings convey potentially useful
information. We visualize the local neighborhoods of the
10-dimensional content vectors via T-SNE [37] in Fig. 5,
for which we use a perplexity of 15. We only include the
most frequently used contents to keep the diagram readable.
Concretely, we chose as a cut-off point contents that are used
in at least 16 clusters or 50 methods, which is true for a total
of 459 of the 1032 content strings we use in the embeddings.
This excludes the more idiosyncratic or domain specific strings
that only occur in smaller number of specific methods or
clusters. Note that we display the string consisting of one space
character as ”SPACE” and the empty string as ”EMPTY”.

Some striking structures are visible in the diagram. We can
clearly identify distinct clusters of strings that are associated
with exceptions (on the top, in the middle). Other clusters deal
primarily with I/O streams (top right), operators and primitive
types (bottom), and filenames (left bottom). In the context of
code clones, this helps to account for variation found in Type-
2 clones. Those vary only in the choice of a variable name that
is swapped out for a similar name. Further, this puts variation
in the scope of detectability, where types are changed to get
an implementation with higher precision, changes due to API
renaming, or replacing of a caught exception type for a more
or less specific other type.

There are only a total of 91 different node types including
the artificial ones introduced for the binarization. Conse-
quently, their embedding vectors lie very sparsely in the 4-
dimensional representation space and its visualization does not
allow for a similarly rich qualitative interpretation.

V. RELATED WORK

A lot of recent work uses neural networks of different
kinds to compute continuous vector representations for code
fragments to solve different tasks.

Code Clone Detection

The closest related work [16] also uses a Siamese Network
of Recursive LSTM to learn a representation of code in a
supervised way. Further, the framework learns to transform this
continuous vector representation to a binary hash code, which
is compared by Hamming distance. The models are trained
on BigCloneBench and OJClone and evaluated in terms of
precision, recall, and F1 for a fixed decision threshold and
compared to state-of-the-art approaches and representations.
In this work, we put a focus on generalizability and show
that only a careful distinction of training, validation and
test pairs by clusters guarantees a realistic measurement of
generalization. We also offer an ablation study of model
variants and hyper-parameters.

Oreo [14] uses a Siamese Network architecture to predict
code clones, where Java code fragments are represented by
software metrics. Filtering by similar size and sufficient over-
lap of so-called ”action tokens” is employed as a blocking
method. The training supervision signal may be provided
by any state-of-art code clone detector; here SourcererCC
[38]. The authors show that the resulting model is highly
scalable, competitive in performance, and outstanding in the
so-called ”twilight zone” of code clones (moderately Type-3
and beyond).

DeepSim [15] represents Java methods by matrices encod-
ing their control flow and data flow graphs. It then pretrains
the layers of a feed-forward network by a Stacked Denoising
Auto-Encoder. The learned representation is compared to a
fine-tuned version obtained by supervised learning with a
Siamese architecture, and to state-of-the-art approaches.

CCLearner [18] aggregates two ASTs in token-frequency
lists of eight categories of tokens. It then computes the dice
index for all eight pairs of lists. A Neural Network with
two hidden layers learns to predict the supervision signal
clone/non-clone from this. CCLearner uses only one clone
cluster, #4, from BigCloneBench for training, and 9 remaining
clusters for testing. Our approach does not rely on preselected
categories of tokens or hand-crafted features. Instead, it learns
a non-linear aggregation scheme by a Recursive Neural Net.

The algorithm in [17] is an unsupervised learning approach
for code clone detection. The authors train a language model
for the tokens at the leaf nodes with a Recurrent Neural Net-
work. Then they train a recursive auto-encoder to summarize
the vectors of length n representing two child nodes into a
single vector of length n, by minimizing the reconstruction
error. The resulting vector representing the whole AST is used
for comparison by the Euclidean norm. Our approach uses a
supervision signal from known clones and non-clones and can
directly learn to distinguish these in a training set.

Other tasks

Code2vec [20] introduces a vector representation for ASTs
of Java methods, to predict their method names. The basic
units under consideration are paths between two leaf nodes.
These are treated as distinct tokens. Together with the two
leaf nodes they build a path context. Each of the three tokens

of a path context is mapped to a vector by an embedding.
A Neural Network learns to assign attention weights to all
path contexts found in an AST. These are used to compute
a weighted sum of the path context vectors. The network is
trained to maximize the cosine similarity to the representation
of the method’s name, from an embedding. Our approach does
not rely on any hand-crafted feature of an AST; the features
emerge from the supervised training.

A Siamese Network has been used by [22] to link different
types of software engineering artifacts in natural language (re-
quirements and design descriptions). The two network copies
that the Siamese Network combines are Recurrent Neural
Networks, reading in two sequences of Natural Language
tokens. These tokens are represented by an embedding trained
with a word2vec skip-gram algorithm. Our approach reads
tree-structured data instances (ASTs) originating from the
same domain and aims at retrieving clones.

VI. FUTURE WORK

To prevent overfitting, we use closed vocabulary for node
contents, i.e. restrict node contents to those with strings oc-
curring more frequently. In future work our approach could be
extended to work with an open token vocabulary by modeling
node content strings via a Recurrent Neural Network. This
would allow generalization of vector representations to handle
unseen strings in a meaningful way, and is compatible with
the remainder of the proposed method.

Another possible future work relates to model interpretabil-
ity and understanding about how these models operate in de-
tail. In particular, an interesting challenge is to study whether
it is possible to distill certain aggregation schemes as explicit
and transparent heuristics. These could serve as ”stand-alone”
features of ASTs.

Our model does not include any hand-crafted features
that were created with the task of code clone detection in
mind. Therefore, the continuous vector representation of code
fragments can be used for a whole range of tasks. It would
be particularly interesting to observe whether using a model
pretrained on the code clone detection task shows faster
or better convergence on unrelated tasks such as generating
natural language summaries of code fragments. The practice
of such transfer learning is applied in fields like computer
vision [39] and NLP [40].

Conversely, it might be worthwhile to study whether Code
Clone Detection can benefit from representations pretrained
on a different task, via transfer learning, or jointly trained via
multitask learning.

VII. CONCLUSION

In this paper, we study a data-driven approach to deriving
non-linear aggregation schemes for abstract syntax trees. We
use the cosine similarity of the vector representations of
method pairs to evaluate on a test set of clone clusters from
BigCloneBench.

We find that performance in terms of AUC increases until
the dimensionality of 150, after which point overfitting sets

in. We find further evidence for the usefulness of pretrained
embeddings in learning-based approaches for software engi-
neering. A good and simple baseline is to simply average node
vectors, which especially does not involve further learning.

We show that error scaling is a good way to address
the class imbalance problem. Our results also imply that in
supervised learning of code clone detection, it is important
to split training and test data by clusters, to get a useful
estimation of generalization to unseen clusters.

REFERENCES

[1] B. S. Baker, “On finding duplication and near-duplication in large
software systems,” in Reverse Engineering, 1995., Proceedings of 2nd
Working Conference on. IEEE, 1995, pp. 86–95.

[2] J. Jang, A. Agrawal, and D. Brumley, “Redebug: finding unpatched code
clones in entire os distributions,” in Security and Privacy (SP), 2012
IEEE Symposium on. IEEE, 2012, pp. 48–62.

[3] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani,
and J. Vitek, “Déjàvu: a map of code duplicates on github,” Proceedings
of the ACM on Programming Languages, vol. 1, no. OOPSLA, p. 84,
2017.

[4] L. An, O. Mlouki, F. Khomh, and G. Antoniol, “Stack overflow: a code
laundering platform?” in Software Analysis, Evolution and Reengineer-
ing (SANER), 2017 IEEE 24th International Conference on. IEEE,
2017, pp. 283–293.

[5] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting
cloned applications on android markets,” in European Symposium on
Research in Computer Security. Springer, 2012, pp. 37–54.

[6] T. Bakota, R. Ferenc, and T. Gyimothy, “Clone smells in software evo-
lution,” in Software Maintenance, 2007. ICSM 2007. IEEE International
Conference on. IEEE, 2007, pp. 24–33.

[7] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-paste
and related bugs in large-scale software code,” IEEE Transactions on
software Engineering, vol. 32, no. 3, pp. 176–192, 2006.

[8] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and
K. De Bosschere, “Performance prediction based on inherent pro-
gram similarity,” in Parallel Architectures and Compilation Techniques
(PACT), 2006 International Conference on. IEEE, 2006, pp. 114–122.

[9] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi,
“Sourcerer: mining and searching internet-scale software repositories,”
Data Mining and Knowledge Discovery, vol. 18, no. 2, pp. 300–336,
2009.

[10] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s School of Computing TR, vol. 541, no. 115, pp. 64–
68, 2007.

[11] R. Koschke, “Survey of research on software clones,” in Dagstuhl Sem-
inar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2007.

[12] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Compar-
ison and evaluation of clone detection tools,” vol. 33, no. 9, 2007.

[13] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “Deep learning similarities from different representa-
tions of source code,” in International Conference on Mining Software
Repositories, 2018.

[14] V. Saini, F. Farmahinifarahani, Y. Lu, P. Baldi, and C. Lopes, “Oreo: De-
tection of clones in the twilight zone,” arXiv preprint arXiv:1806.05837,
2018.

[15] G. Zhao and J. Huang, “Deepsim: deep learning code functional similar-
ity,” in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, 2018, pp. 141–151.

[16] H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code.” in IJCAI, 2017, pp. 3034–3040.

[17] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2016, pp. 87–98.

[18] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “Cclearner: A deep
learning-based clone detection approach,” in Software Maintenance and
Evolution (ICSME), 2017 IEEE International Conference on. IEEE,
2017, pp. 249–260.

[19] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen, “Exploring
api embedding for api usages and applications,” in Software Engineering
(ICSE), 2017 IEEE/ACM 39th International Conference on. IEEE,
2017, pp. 438–449.

[20] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” arXiv preprint arXiv:1803.09473,
2018.

[21] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Acm Sigplan Notices, vol. 49, no. 6. ACM, 2014,
pp. 419–428.

[22] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced soft-
ware traceability using deep learning techniques,” in Proceedings of the
39th International Conference on Software Engineering. IEEE Press,
2017, pp. 3–14.

[23] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 631–642.

[24] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings
to document similarities for improved information retrieval in software
engineering,” in Proceedings of the 38th international conference on
software engineering. ACM, 2016, pp. 404–415.

[25] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, 2017,
pp. 763–773.

[26] A. T. Nguyen, T. D. Nguyen, H. D. Phan, and T. N. Nguyen, “A deep
neural network language model with contexts for source code,” in 2018
IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2018, pp. 323–334.

[27] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[29] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber et al., “Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies,”
2001.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[31] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[32] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[33] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
international conference on Software Engineering. IEEE Computer
Society, 2007, pp. 96–105.

[34] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a” siamese” time delay neural network,” in Advances
in Neural Information Processing Systems, 1994, pp. 737–744.

[35] C. Goller and A. Kuchler, “Learning task-dependent distributed repre-
sentations by backpropagation through structure,” in Neural Networks,
1996., IEEE International Conference on, vol. 1. IEEE, 1996, pp.
347–352.

[36] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on. IEEE, 2015, pp. 131–140.

[37] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[38] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: scaling code clone detection to big-code,” in Software
Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on.
IEEE, 2016, pp. 1157–1168.

[39] L. Shao, F. Zhu, and X. Li, “Transfer learning for visual categorization:
A survey,” IEEE transactions on neural networks and learning systems,
vol. 26, no. 5, pp. 1019–1034, 2015.

[40] L. Mou, Z. Meng, R. Yan, G. Li, Y. Xu, L. Zhang, and Z. Jin, “How
transferable are neural networks in nlp applications?” arXiv preprint
arXiv:1603.06111, 2016.

