
Detecting Higher-Order Merge Conflicts in Large
Software Projects

Thorsten Wuensche
SAP SE

Walldorf, Germany
thorsten.wuensche@sap.com

Artur Andrzejak
Heidelberg University
Heidelberg, Germany

artur.andrzejak@informatik.uni-heidelberg.de

Sascha Schwedes
SAP SE

Walldorf, Germany
sascha.schwedes@sap.com

Abstract—Merge conflicts can occur when multiple developers
work concurrently on the same source code corpus. Diverging
textual changes (in the same lines of code) are typically easy to
resolve with help of common tools like Git.

More challenging are higher-order merge conflicts. They arise
as the result of unintended interactions between changes in
different parts of the source code. Higher-order merge conflicts
can be caused by a combination of changes, and so even thorough
testing of the individual development branches might not be able
to identify them.

We suggest an approach based on static analysis and a proto-
typical tool to detect potential higher-order merge conflicts. Our
method identifies potentially dangerous dependencies between
changed code fragments in a call graph. An evaluation on SAP
HANA, a very large industrial product in C++, shows that the
approach is able to identify 62% of higher-order merge conflicts
causing build failures over 22 months project development time.
The same prototype finds no instance of higher-order merge
conflicts causing test failures in SAP HANA during a two month
development period. In summary, our method scales well and
can identify higher-order merge conflicts which escape traditional
testing.

Index Terms—version control system, merge conflict, static
analysis

I. INTRODUCTION

Merge conflicts can occur when the contributions of multi-
ple developers to the same software project interact with each
other in unintended ways. The most well-known type of merge
conflict is caused by changes to the same lines of code. In
this case, the contributions cannot be automatically merged
and manual intervention from the developers is required. Not
all merge conflicts are so easy to find, some may pass the
automated merge unnoticed and cause the program to fail its
build or show unexpected behavior.

This is referred to as a semantic or higher-order merge
conflict. After merging code changes that were individually
harmless, new defects arise in the master branch. As the
defects were not present in the development branches, even
thorough testing prior to the merge cannot protect the master
branch from these conflicts. Higher-order merge conflicts
can introduce build failures which prevent the program from
compiling. They can also cause tests to fail, or be responsible
for unintended behaviour of the code in the master branch.

There are already several tools that detect higher-order
merge conflicts such as Crystal [1], WeCode [2] and Behaviour
Driven Conflict Identification (BDCI) [3]. These approaches

can solve the problem for small and medium sized projects
with extensive automated test suits, but they scale poorly for
large projects, where compiling the code and executing a test
run can take several hours.

We propose an approach to detect potential merge conflicts
by identifying code segments that depend on changes in differ-
ent parallel development branches. We detect the underlying
dependencies via static analysis, which avoids the need for
costly compilation and test execution steps. By prioritizing
speed over accuracy, our method can be used even in projects
with a large code base and dozens of parallel development
branches. The source code of our prototype is available on
GitHub [4].

Our contributions are as follows:
• We develop an approach and a prototype to find poten-

tial higher-order merge conflicts. Our approach uses a
statically constructed call graph which reuses data from
previous runs to scale well with very large source code
repositories.

• We evaluate our method on known build conflicts in SAP
HANA, a very large software project in C++ and examine
the properties and root causes of those conflicts. We also
inspect SAP HANA for test conflicts.

This paper has following structure. We introduce the SAP
HANA project, its testing process and a taxonomy of merge
conflicts in Section II. In Section III we present our approach,
and we evaluate it in Section IV. Section V discusses related
work. Finally, we state our conclusions in Section VI.

II. BACKGROUND AND MOTIVATION

A. Taxonomy of Merge Conflicts
We extend the merge conflict taxonomy of Brun, Holmes,

Ernst and Notkin [5] by including possible causes of each type
of conflict from the perspective of dependency analysis. We
differentiate between textual and higher-order merge conflicts.
The latter are then differentiated based on their impact.

Textual conflicts are caused by concurrent modifications to
the same parts of the source code. The corresponding merges
are typically rejected by a version control system (VCS), but
it requires manual effort to resolve the conflicts before the
merge is accepted into the repository.

Merge conflicts not found by a VCS are called higher-order
merge conflicts. They can be further separated into multiple

categories according to their effect. Build conflicts cause errors
at compile time, and test conflicts result in failing tests. Further
categories related to performance or code style are possible,
but have not yet been studied in depth.

Note that proximity of concurrent modifications is an im-
portant factor distinguishing the two main types of merge
conflicts: while textual conflicts can only be caused by modi-
fications in close proximity to each other, code modifications
responsible for build conflicts can be also ”far apart”.

B. SAP Hana and its Testing Process

SAP HANA is a database platform developed by SAP which
is used as the basis for SAP’s business applications such as the
Enterprise Resource Planning (ERP) software S/4 HANA. It
combines transactional, analytical and spatial data processing
as well as text analysis in an in-memory store and offers access
to the data via SQL and domain-specific languages. Further
properties are a strong focus on multi-core processing and the
ability to run on multiple hosts in a scale-out setup.

The source code of SAP HANA consists of more than 30
Million source lines of code which mostly reside in a single
large Git repository. Several hundred developers work on the
product and produce about 800 software changes on a regular
working day.

Testing of SAP HANA is done in a staged approach as
shown in Figure 1. Software changes are at first tested locally
on the developer’s workstation. If the change is considered
fit, the developer will push it to the shared Git repository.
Before it is actually merged into the shared repository, a
snapshot of the current content of the repository is taken into
a shadow repository, the developer’s change is applied to that
snapshot and a build and test step is run against that change-
specific shadow repository. Only if the build and test step
in the shadows repository succeeds, the change is applied to
the shared repository and thus made globally visible to all
developers. This testing stage is called pre-submit testing.

Before SAP HANA is made available to customers, testing
continues against the content of the shared repository at stages
with increasing resource demand. These two last stages shown
in Figure 1 are referred to as post-submit testing and release
qualification.

Pre-submit testing takes a considerable amount of time per
software change, often several hours. While the pre-submit
testing for a specific change is performed, the content of
the change-specific shadow repository ages with every other
software change that successfully completes its pre-submit
stage and is applied to the shared repository. In other words, a
snapshot for a shadow repository taken several hours ago may
show a significant deviation compared to the current content
in the shared repository. Thus, the result of the pre-submit
testing may become invalid.

This is exactly the case when changes have been applied
to the shared repository that conflict with a change currently
under pre-submit testing. Textual conflicts are reliably detected
at patch-application time by existing tools (e.g. Git) that will
indicate a merge conflict automatically. However, higher-order

Local testing

Pre-submit testing

Post-submit testing

Release qualification

change not yet
globally visible

change globally
visible

Fig. 1. Testing of SAP HANA during the development process (simplified)
and software change visibility.

a ... b

Fig. 2. The changed entity a directly or indirectly depends on the changed
entity b.

merge conflicts may be introduced into the shared repository
unnoticed and only be detected at the next build or test run.
Such higher-order merge conflicts reduce the effectiveness of
the pre-submit testing stage, whose purpose is to avoid the
introduction of faulty changes into the shared repository and
keep the repository sane.

C. Build Conflicts and their Causes

In our SAP HANA testing practice we observed three main
causes for build conflicts:

• Changes to the signature, including modified names,
arguments, return values, or even a complete removal
of the entity. This occurs when exposed properties of a
source code entity are modified and then merged with a
changeset which expects the old signature. In this case,
the changes expecting the previous behavior have to call
the changed entity either directly or through a sequence
of calls as shown in Figure 2.

• Missing include statements can break the build. This
might occur for instance when one changeset cleans up
unused includes, while another begins to use code from
the included file, or when source code is moved from one
file to another.

• Duplicate definitions will cause build conflicts. They are
introduced when entities of the same name are created
and not caught by the VCS, e.g. because the definition is
placed in different parts of the same file.

All three cases have in common that the two conflicting
changes can be located in different parts of the source code,
making them difficult to find without compiling. Once the
merged code is compiled, the conflict becomes visible by
breaking all subsequent builds. This type of conflict is caught
by pre-submit testing, as a failing build will cause one of the

c

...

...

a

b

Fig. 3. The changed entities a and b are called directly or indirectly by the
unchanged entity c. A test conflicts can occur in c.

conflicting changes to be rejected. This assumes that the pre-
submit tests of all merges are tested in sequence. Parallel test
execution (typically used to speed up the testing process when
very long build and test times are expected) can cause presence
of build conflicts between merges not tested sequentially.

D. Test Conflicts

Test conflicts occur when the behavior of a code entity
was modified while a concurrent change expected the old
behavior. Such conflicts can only occur if neither textual nor
build conflicts are present, otherwise no tests can be run on
the merged code.

Typical code changes responsible for test conflicts found
in testing of SAP HANA include splitting a large entity into
smaller parts while one part retains the original name (without
the full functionality). Other causes are modifications of two
separate entities with one of them calling the other. Even more
complex situation occurs if unchanged parts of the code call
two separate changed entities, see Figure 3.

In general, test conflicts are difficult to find, and they can
be responsible for unexpected behavior of any severity. As
this conflict type is only defined by its effect rather than its
cause, incompatible changes to the product and the test code
could also lead to test failures, even though the product’s
functionality remains unaffected.

III. DETECTION OF HIGHER-ORDER MERGE CONFLICTS

To detect higher-order merge conflicts we search for po-
tential conflicts between changes that are undergoing pre-
submit testing. To this end we construct a static call graph
(not considering inheritance and dynamic call dispatching) and
search for dependencies between changed code entities.

A. Overview of Call Graph Construction

Figure 4 outlines the call graph construction. Essentially,
it consists of two phases. In phase one (top three steps in
Figure 4), the source code is parsed and scanned for named
units (essentially any named source code elements) and calling
units (essentially method calls). The second phase is the core
part of graph construction where calling units and named units
are matched for changed C++ files (see bottom five steps in
Figure 4).

The named units and calling units are characterized as
follows:

Input: source directory,
set of changed files

(when updating
previous call graph)

For each file in source
directory: has file changed?Yes Done

Preprocessed files: parse
with srcML, extract

includes, named units and
calls, save as JSON files

Initialize call graph as
sparse NxN matrix;

N = # of named
units over all files

For each preprocessed file: Done

For each named unit:
Mark overlap between

this units calls and named
units from included
files in call graph

Done

Return: call graph,
mapping between

ID and textual
representation (file + name)

Fig. 4. Construction of the call graph for the source code in a given directory.
All changed code is scanned by srcML, the result is parsed to extract included
files, named units and calling units. Connections are detected via second
iteration over all named units.

Named units can be classes, functions, structs, constructors,
destructors, enums, typedefs, unions, macros or variables.
They have an assigned name which can be used to reference
them from different parts of the code (including other files).
All named units can reference their own name. This ensures
that declarations and definitions can be linked together, even
if they are located in different files.

Calling units are method calls or data types. They poten-
tially contain a call to a named unit.

B. Implementation of Call Graph Construction

The input of our prototypical tool is: (i) path to the source
directory, (ii) reference to the master revision (which serves
as the basis of the call graph), (iii) references to the relevant
repository branches. Each branch is referenced as a pair of
hashes representing the branch and the revision of the master
branch at the time the merge was queued. As the requested

merge stays in the queue while other merges are tested, the
revision of the master branch used to test the changes may be
more recent.

Our prototype first attempts an octopus merge (i.e. a merge
with more than two parents) which merges all branches into
the master revision at once. If textual conflicts are detected at
this stage, the merge fails. For reasons stated in Section II such
conflicts need to be resolved first before search for higher-
order merge conflicts can continue. We then identify as follows
the files which need to be parsed to update the call graph: these
are the files which differ between the octopus merge and the
master branch revision from the last run (which is recorded in
a separate file).

In the next step we use srcML [6] to parse all changed C++
files. The results are scanned for include statements, named
units and calls using XPath expressions. Calling units are
assigned to the named units that contain them. The extracted
information is saved as a collection of JSON files, replicating
the original folder structure of the source directory.

After identifying named units and calling units in the
changed C++ files, the core part of the call graph construction
is performed: iterating over every named unit in every file,
and comparing the recorded calling units to the named units
of the included files (bottom half of Figure 4). If a named
unit matching a calling unit is found, the corresponding entry
in the call graph is marked. Sometimes (especially when the
unit name is common) several potentially called units can be
found. As identifying the correct one is complex and time-
consuming, we add all of these connections to the graph.

The call graph construction algorithm is implemented in
Python and represents the graph as a sparse Python/SciPy
NxN adjacency matrix, where N is the number of named
units over all files. The algorithm returns as output the
adjacency matrix (serialized as an object Python/NumPy npz
file), and a mapping from ID to named unit as a JSON file.

1) Performance Aspects: The level of transitive includes
can be adjusted to find more connections at the risk of
introducing false positives. This has significant impact on
the runtime. Without transitive includes, the graph can be
created in under two minutes, one level requires around twelve
minutes. The call graph is recreated during each execution.

If no previous runs are recorded, or the preprocessed files
are destroyed, the entire source directory has to be parsed,
which takes around two hours for SAP HANA.

Significant runtime improvements can be achieved by skip-
ping the unchanged files. Performing one scan per day reduces
the total runtime to approximately 15 to 30 minutes (assuming
one level of transitive includes) for all subsequent executions,
of which only around two minutes are required for parsing.

C. Detection of Potential Conflicts

Once the call graph is constructed, potential conflicts are
detected using the patterns discussed in Section II-C and in
Section II-D.

Specifically, we search for three different cases in which
two changes can be in conflict:

1) Both changes affect the same named unit.
2) There is a path of calls from one changed unit to the

other (Figure 2).
3) There are two paths of calls originating from the same

(unchanged) named unit and each of them reaches one
of the changed units (Figure 3).

In the following we consider a generalized potential conflict
consisting of two changed units (changed by different merges)
and one affected unit, with a path of calls from the affected
to each of the changes. In the second case, one of the paths
contains only the affected unit itself. This means that one of the
changed units is also the affected unit. The first case involves
only a single named unit, playing the role of the affected and
both changed units. Both paths contain only the unit itself.

The workflow used to find these potential conflicts and
report the names of the affected unit, the changed units and all
units on the two call paths is shown in Figure 5. To facilitate
identifying named units which can call two specific changed
units we traverse the call graph in the opposite direction.

IV. EVALUATION AND RESULTS

We investigate records of build conflicts in SAP HANA
development recorded during a 22 month time-span. Where
available, we examined the changesets that caused the conflict
as well as the commit that resolved it to answer these research
questions: RQ1 What type of code changes cause build con-
flicts? RQ2 How sensitive is our prototype to configuration
parameters? RQ3 How common are test conflicts?

A. RQ1 What type of code change causes build conflicts?

Pre-submit testing should ensure that the master branch
compiles correctly at all times. Whenever this is not the case,
build conflicts are a likely cause. By recording such incidents
and the commits that introduced and fixed the build failure, we
can examine 54 build conflicts in SAP HANA in 22 months. To
identify their cause we search for the two conflicting commits
as well as the commit that resolved the conflict. We consider
four cases:

Signature changed
The conflict occurred because the name, arguments
or return type of a source code entity were changed
or because the the entity was removed entirely.

Include
An include statement was missing or an included file
was deleted.

Duplicate definition
A variable or function identifier was defined multiple
times.

Unknown
The documentation for many build conflicts was
incomplete, missing one of the conflicting merges
or the fix. While causes for these conflicts could not
be identified, they are still listed to correctly reflect
the overall frequency of build conflicts.

Table I shows the distribution of the build conflicts for the
considered root causes. In some cases it was either unclear

Input: source directory,
up-to-date master-revision,
pairs of branch-revisions
and master revision of
the requested merge

Update preprocessed files

Construct call graph

For each branch-revision:

Find changed files
(diff to merge-base with
paired master revision)

Done

Find all callers of changed
units in call graph

For each pair of
changed units:

(regardless of order,
with replacement)

Done

Has more than one branch
made changes to the pair?Yes

Do the callers overlap?

Each unit in the overlap
is an affected unit, save

paths to both changed units
Yes

Return: list of conflicts
Each with affected
unit, changed units

and call paths

Fig. 5. Complete workflow for finding higher order merge conflicts. After
the call graph is created, all paths through it originating from the changed
units are tested pairwise for overlaps. If a pair was edited by more than one
branch revision and their paths overlap, all named units in the overlap are
potentially affected by higher-order merge conflicts.

TABLE I
BUILD CONFLICT CAUSES

Cause of conflict Number of Conflicts (out of 54) Percentage
Signature changed 27 50%
Include missing 4 7%
Duplicate definition 3 6%
Unknown 20 37%

which changesets caused a failure or the data was not recorded
completely. Therefore, 20 cases could not be reliably assigned
to one of the categories and are listed as unknown. They are
reported here nonetheless to correctly represent the frequency
of build conflicts.

The most common root cause for build conflicts is a
signature change (50%). Of these 27 conflicts, 16 were due to
a changed or deleted name, which was still referenced in one
of the conflicting changesets. The remaining 11 cases were
the result of changed arguments or return types.

Less common were missing or wrong include statements
(four cases). These were usually due one of two kinds of
refactoring: Most commonly, unused import statements were
removed, while a conflicting changeset started to use them.
There was also a case where a large file was split into smaller
parts, causing a file changed in another branch to miss the
moved source code entities.

Finally, there were three build conflicts caused by duplicate
definitions. In these cases, the duplicated elements did not
only share their names, which would be enough to break the
compilation, but were completely identical. The VCS did not
recognize this duplication due to different positions in the
source code, leading to two identical sections in the same file.

Both signature changes and faulty include statements occur
as part of refactoring and involve automated changes to large
parts of the source code. When for instance the name of a
function is changed, many IDEs will highlight calls to that
function for the developer, or offer to alter all occurrences
elsewhere in the code. With the support of the IDE, it is
possible to keep track of all the parts of the source code
that need to be edited. This support does not extend to other
branches or local copies on the machines of other developers.
There, the changes required by the refactoring are missed and
can cause build conflicts once merged. This mechanisms might
explain a recent empirical findings indicating that the number
of merge conflicts increase when IDEs with refactoring support
are used [7].

Figure 6 shows the number of C++ files involved in merges
that caused build conflicts. As each conflict involves two
merges, we list them separately grouped by size and compare
them to the number of C++ files in an average merge.
61% of the average merges contain ten or fewer files, and
the frequency falls further the more the size increases. The
smaller of the chagesets involved in build conflicts behave
very similar, with slightly more files on average. The larger
of the conflicting changesets however involves over 50 files
in 79% of cases. These files are often changed by the IDE as
part of a refactoring, which was unaware of the changes made

0-10 10-20 20-30 30-40 40-50 50+

0%

20%

40%

60%

80%

C++ files

Size of Conflicting Changesets

regular merges
build conflicts (small)
build conflicts (large)

Fig. 6. Number of changed C++ files of merges involved in a build conflict
relative to regular merges.

in the second changeset.

B. RQ2: How sensitive is our prototype to configuration
parameters?

Our prototype depends on two parameters: the distance of
transitive includes used in the creation of the call graph and
the length of call chains used during conflict detection.

Transitive includes are files not included directly, but via a
different include. During compilation, all includes are consid-
ered, regardless of how far removed they are, but this requires
linking to ensure the correct handling of recurring names.
Without a linker, we need to find a balance to ensure potential
conflicts can be found without introducing a large amount of
false positives.

The length of call chains refers to the number of nodes in the
call graph between a conflict and its conflicting changes. When
allowing for long chains, the dependencies of all changes over-
lap at some point, leading to many false positives. Limiting
the length too low will cause us to miss conflicts.

The challenge when looking for suitable parameters is
reducing the number of false positives to a point where manual
examination is possible. Eliminating false alarms completely
would require the code to be compiled and test to be run,
which defeats the purpose of a fast prediction method.

Table II shows the shortest distances of transitive includes,
that enabled our prototype to correctly find a build conflict.
62% of the successfully identified build conflicts conflicts were
found when only direct includes were considered during call
graph creation. The remaining 38% required indirect includes
of distance one, while also maintaining all of the conflicts

TABLE II
PROTOTYPE: TRANSITIVE INCLUDE DISTANCE FOR BUILD CONFLICTS

Distance number of conflicts (out of 20) Percentage
0 13 62%
1 8 38%

TABLE III
CALL GRAPH PROPERTIES BY TRANSITIVE INCLUDE DISTANCE

Distance of
transitive
includes

0 1 2 3

connections 3.511313 8.655.580 15.092.025 19.616.230
connected
components 98.253 61.461 50.530 47.680

Size of
largest
component

607.226
(80%)

648.655
(85%)

662.190
(87%)

665.139
(87%)

potential
conflicts 29 54 95 104

found with the lower settings. Table III shows how raising
the distance of transitive includes effects the size of the call
graph and the number of potential conflicts it identifies. In
total, the call graph that supplied the numbers for Table III
was computed from 50.424 files, yielding 760.196 named
units. To identify potential conflicts, five different merges were
compared, including 1, 7, 8, 53 and 66 changed C++ files
respectively.

Increasing the transitive include distance beyond one did
not result in a higher number of correctly identified conflicts,
and is thus not worth the increase in false positives.

The distance between conflicting units describes the number
of edges in the call graph, that separate the affected unit, in
which the conflict occurs, from the conflicting units, which
cause it. In the case of build conflicts, the affected unit always
overlaps with one of the conflicting units (Figure 2), test
conflicts do not share that restriction. Figure 7 shows the
distances which were identified by our prototype. The 21
cases, in which the prototype was at least partially successful,
contained 26 conflicts.

Six of the 26 conflicts were caused by changes to the same
source code entity, resulting in distance of zero. In 15 cases,
there was a single call between affected and conflicting units.
The five remaining cases with distances between two and five
upon closer inspection also had distance one in reality, but
the prototype was unable to find them without increasing the
allowed distance. This was the case because the prototype
found longer, more complicated paths to the conflicting units
when changed names of source code segments made the
shorter paths unrecognizable in the call graph.

Using the parameters determined above, the performance
of our prototype is shown in Table IV. A success requires,
that all conflicting and affected units are correctly identified,
and that the calls between them are accurate. In this case, the
result could be used both for prediction and as assistance for
developers to resolve the conflicts. A partial success occurs,
when multiple conflicts are present, but not all were correctly

0 1 2 3 4 5

0

5

10

15

calls between conflicting units

#
co

nfl
ic

ts
Distance of Conflicting Units

Fig. 7. Number of calls required to reach one conflicting unit from the other
conflicting unit.

identified, or the sequence of calls is incorrect. The prototype
still issues a correct warning, but the result is incomplete
and is only partially useful for resolving the conflicts. Partial
successes are rare, as they require multiple merge conflicts
to be present within the same merged changeset. A failure
requires that no conflict was identified correctly. In these cases,
the merge conflicts were overlooked and no useful prediction
could be made.

We split the result by the cause of the conflict and dif-
ferentiate a signature change further by whether it effects
the name of the unit. As our prototype identifies units by
their name, changing or removing names negatively effects
the performance more than changes to the return type or the
arguments. Missing or incorrect include statements cannot be
found by our prototype, as they occur outside of the units that
are used as nodes in the call graph.

As partial successes also contribute correct predictions, we
reach a recall rate of 62%. Test conflicts, which would be
caused by changes to the internal logic, would fall into the
same category as changes to the input and output, which shows
significantly higher recall. Out of 79 executions performed
to find test conflicts, we found 22 false positives (28%).
This number is however inflated. Our prototype compares all
merges in an execution pairwise and assumes, that all are being
tested in parallel. To cover a large number of merges, we had
to test merges performed over the course of one or two days
in one execution. As a result, some of these merges could not
have conflicted with each other. To get a better idea of the rate
of false positives, we ran 22 executions with merges, that were
currently under test. As this data was taken directly from the
monitoring system, we know that these merges were tested in
parallel. Of these 22 executions, 2 reported potential conflicts
(9%). For comparison, the total test set (including both these

TABLE IV
PROTOTYPE SUCCESS-RATE FOR BUILD CONFLICTS BY CAUSE

Cause of conflict Success Partial success Failure
Name changed 7 1 8
Input or Output changed 9 2 0
Include 0 0 4
Duplicate definition 2 0 1

22 runs and the previous, larger cases) contained on average
18.8 merges, the reduced test set of 22 runs averaged at 8.5
merges per execution.

C. RQ3: How common are test conflicts?

Previous research on this topic is scarce and the available
sources disagree by a large margin: Brun et al. [5] found test
conflicts in 27% of the 399 merges they examined, which is 4.5
times as many as build conflicts. Kasi and Sarma [8] report
20% test conflicts and 9% build conflicts in 1158 merges,
which also suggests that test conflicts are more common than
build conflicts, though only by a factor two. By contrast,
Accioly et al. [9] report only 5 test conflicts and 84 build
conflicts out of 64,445 merges.

This leaves us with only a vague idea as to how many test
conflicts we can expect. Given that 54 build conflicts were
recorded in 22 months, and that Brun et al. found test conflicts
to be 4.5 times more common, we could expect up to 11 test
conflicts per month. Going by the results of Accioly et al.
however, it is possible that there are no test conflicts to find,
given that the amount of merges we can cover is limited.

In total, we scan for test conflicts in three phases:
Current samples

22 runs are performed on merges that are being
tested while we started the analysis. This is a realistic
scenario, that a tool like our prototype may be used
to predict conflicts before they occur.

All successful merges from February 2019
These merges were two months old at the time of
analysis, which means that the developers may still
remember some of the changes made during that
month. This is relevant as we may not be able to
decide, whether a test failure is truly the result of
a merge conflict. In such a case, interviewing the
developer could prove valuable. February is also far
enough in the past, that most of the bug reports
are resolved. This is helpful, as bug reports show
the presence of a defect and the resolution can
be used to determine the cause. Many defects are
complex and cannot be quickly analysed by someone
unfamiliar with the code. To cover a high number of
potential conflicts, we rely on bug reports, rather than
analysing the merged changes ourselves.

All successful merges from July 2018
As these changes are over half a year old, it may be
more difficult to receive information from the devel-
opers. July 2018 did however stand out as the month
with the highest concentration of build conflicts. This

suggests that a lot of potentially conflicting merges
were made, and could have lead to more test conflicts
as well. It will also let us check whether the results
of February are representative.

To verify whether a potential conflict reported by the
prototype corresponds to a test conflict, we manually compare
it to the bug reports. Depending on the number of potential
conflicts, this can be a time-consuming process and a detailed
investigation is not feasible. To limit the workload, we require
that bug reports fulfil these conditions:

1) The bug report has been created after both conflicting
branches have been merged into the master branch.

2) The bug report has been created no more than two weeks
after the merge. Test conflicts should lead to test failures
in the testing of other merges, or in post-submit test runs.
Both kinds of testing occur frequently and regularly,
therefore it should not take long for a bug report to
be filed. Test conflicts not uncovered by this method are
likely too subtle do find in a superficial search, as they
may not be covered a test case.

3) The bug has been resolved by a fix. Determining whether
a bug is the result of a test conflict or not will be very
difficult without access to its fix. As such we choose
merges far enough in the past, that most bug reports
from that time have been resolved.

Among the bugs that satisfy these conditions, we perform
several searches to find the ones relevant to us. First, we
examine all bug reports that contain the word conti, which
is short for continuous testing. This will cover test conflicts,
that were not found due to the reduced test set used during
the merging process. The number of such bugs is usually
low enough, that all of them can be examined manually. We
examine the comments and the files changed by the fix and
look for file and unit names that appear as potential conflicts
in the results of the prototype.

Next, we search for bug reports with comments containing
file or unit names from potential conflicts. Here we cover
conflicts that have been found while testing later changes. In
particular, we are interested in failing tests, that seem to have
no relation to the changes that are being tested. We once again
use the fix and the comments to determine, whether potential
conflict and bug report are related.

In total, we recorded 79 executions of our prototype, with
1489 merges. As merges within the same execution are ex-
amined pairwise, this results in 21829 comparisons. Using the
previously determined settings for our prototype, namely a
transitive include distance of one and direct calls from affected
to conflicting units, 22 of 79 executions yielded potential
conflicts. These potential conflicts were found in 362 of the
21829 pairs of merges.

After examining the potential conflicts according to the
method described above, none of the potential conflicts were
found to have been the cause of a test conflict. This suggests
that test conflicts are significantly less common than build
conflicts in context of SAP HANA. It is also possible that

our findings are not indicative of the real frequency of test
conflicts. This may be due to several factors:

Test conflicts exist, but were overlooked by our prototype
It is possible that our prototype is ill suited for
finding test conflicts. As we have no real test conflicts
to evaluate its performance, we have done so under
the assumption that test conflicts are similar to build
conflicts.

Bug reports were overlooked
Both potential conflicts and bug reports are too
numerous to conduct a detailed analysis on a larger
sample. A more detailed analysis or less restrictive
selection of bug reports might have uncovered real
test conflicts. This would require more time, leav-
ing us with a much smaller sample size, possibly
strengthening the next point.

Test conflicts did not occur in the selected timespan
As mentioned above, 54 build conflicts were
recorded in 22 months. Previous research suggests
that test conflicts occur with a similar frequency.
As such, a large timespan is essential to ensure
that the number of test conflicts is representative
of the overall frequency. We examined two months
from separate phases of development, but if test
conflicts are rarer than we expected, it is possible
that we simply chose a sample that contained no test
conflicts.

As we have mitigated these risks to the best of our ability,
we conclude that test conflicts are significantly less common
than build conflicts either in general or specifically in SAP
HANA.

V. RELATED WORK

Related work in this field essentially covers two topics: em-
pirical studies of higher order merge conflicts, and approaches
to detect or prevent merge conflicts.

A. Empirical studies

Brun, Holmes, Ernst and Notkin [5] examined nine open-
source repositories containing 3,562 merges. They found that
16% of all merges contained textual conflicts. A subset of
the repositories has been analyzed for higher-order merge
conflicts, which yielded 6% build conflicts and 27% test
conflicts. Kasi and Sarma [8] performed a similar study on
four open-source repositories that found 42% of the merges
resulted in conflicts, of which 13% were textual, 9% build and
20% test conflicts.

Leßenich, Siegmund, Apel, Kästner and Hunsen [10] solely
focus on textual conflicts. In 21,488 merge scenarios they
report a total amount of 11% conflicts, and 6% if considering
only Java code. The difference between the total numbers
and those considering only Java code suggest, that other
parts of the repository such as build files or documentation
significantly contribute to textual conflicts.

Accioly, Borba, Silva and Cavalcanti [9] perform a study
into the feasibility of text-based conflict predictors. They

identify higher-order merge conflicts to select appropriate
projects for closer inspection. In 422 projects containing
64,445 merges, they find 84 (0.13%) build and 5 (0.008%)
test conflicts. They also comment on the significantly higher
numbers reported in [5], [8]: In contrast to the previous
two, this study disqualifies all conflicting merge scenarios,
if the state prior to the merge already contained errors to
avoid counting the same conflicts multiple times. Besides this,
[5], [8] perform the merges locally which may have caused
problems, such as unresolved dependencies, which Accioly,
Borba, Silva and Cavalcanti filter out. By their own admission,
the reported numbers are likely too low, but can serve as a
lower bound.

Accioly, Borba and Cavalcanti [11] also find 5.91% textual
conflicts in Java code of 70,047 merge scenarios. These
conflicts are identified using a semi-structured merge tool,
which resolves numerous conflicts line-based tools cannot,
such as spacing issues. The relatively low number of textual
conflicts can be explained by this more powerful merge tool.

In summary, previous studies have found textual conflicts
in 11% - 16% of merge scenarios. Later studies also report
textual conflicts only in the source code at around 6%.

Higher-order merge conflicts are harder to identify. This
often involves building and testing the source code locally
which is both time-consuming and error-prone, as external
factors can contribute to errors not present in the source code
[10]. The reported numbers range between 29% and 33%, but
valid concerns are raised about the process of these studies
[10], suggesting the real number is far lower. Our own findings
show build conflicts in 0.41% of 14270 merges, and no test
conflicts in 1489 merges. This is comparable to 0.13% build
and 0.008% test conflicts reported by Accioly Accioly, Borba,
Silva and Cavalcanti [9], but in stark contrast to Brun, Holmes,
Ernst and Notkin [5] (6% build and 27% test conflicts) and
Kasi and Sarma [8] (9% build and 20% test conflicts). Where
build and test conflicts were differentiated, [5], [8] report test
conflicts as more common, while [10] suggests more build
conflicts. These differences are likely due to the external
factors mentioned above.

B. Conflict detection and prevention

Palantı́r [12] by Sarma, Noroozi and van der Hoek is
an early tool aiming to avoid merge conflicts by increasing
awareness. This is done by recording which artefacts of a
repository each developer has interacted with, and notifying
other developers making changes to the same artefact.

Dewan and Hegde developed CollabVS [13], which works
similar to Palantı́r, but records not only which files, but also
which classes or methods a developer is working on. This
is achieved by recording their cursor position and activity
using the IDE. It also considers dependencies such as classes
depending on super classes. A different paper [14] with more
focus on the implementation specifics reveals that dependen-
cies are found using binary analysis.

Hattori and Lanza developed the tool Syde [15]. It creates an
Abstract Syntax Tree (AST) of a program for each developer
to determine conflicts by comparing changed AST nodes.

Brun, Holmes, Ernst and Notkin also pursue awareness with
their tool Crystal [1]. Crystal makes use of speculative analysis
[16] to detect merge conflicts. It does so by continuously
merging, building and testing the current code of a developer
against the master repository. Both textual and higher-order
conflicts can be found reliably, because they actually occur in
the background.

WeCode by Guimarães and Silva [2] also performs contin-
uous merges. They use structural merging to avoid sending
notifications about easily resolved textual merges. Test con-
flicts are identified by two different methods: Conflicts covered
by automated test cases are found by running the tests. If no
appropriate test case is available, an abstract semantic graph is
used to identify dependencies and highlight potential conflicts.

Kasi and Sarma take a different route with their tool
Cassandra [8]: Instead of detecting conflicts as they occur,
developer tasks are scheduled in a way that conflict-prone
activities are not carried out concurrently. A dedicated IDE
plug-in determines which source code artefacts are assigned
to each task, and a separate dependency analysis tool finds
associated files.

Semex by Nguyen, Nguyen, Dang, Kästner and Nguyen
[17] combines different code versions into a single program
with variable aware execution. Where the code diverges, the
common program has a branching path for each version,
so that each distinct path from beginning to end is one
possible combination of changes. Tests are then run on every
combination of paths, which identifies test conflicts without
pairwise merging and testing all existing branches. It also
identifies which set of changes causes the conflicts..

Dias, Polito, Cassou and Ducasse [18] suggest using change
impact analysis to find dependencies between code artefacts in
their technique DeltaImpactFinder. The approach compares the
impact of a patch applied to multiple version of a repository.
Should the same patch introduce a different set of dependen-
cies to the different versions, semantic merge conflicts are
likely to occur.

Ahmed, Brindescu, Mannan, Jensen and Sarma [19] exam-
ine the relationship between merge conflicts and code smells.
Methods showing particular code smells are more likely to be
involved in merge conflicts.

Pastore, Mariani and Micucci [3] present Behavior Driven
Conflict Identification (BDCI) which focuses on a program’s
behavior. BDCI identifies all methods, that have been modified
and monitors their entry and exit points during test executions
to derive possible input and output values. In the case of con-
flicting changes to the observed values, higher-order conflicts
are likely the cause.

Accioly, Borba and Cavalcanti [9] examine the potency of
static conflict predictors. They make use of a semi-structured
merge tool and their own ConflictAnalyser from a previous
work [11].

Leßenich, Siegmund, Apel, Kästner and Hunsen [10] exam-
ine the effectiveness of seven conflict indicators suggested by
developers such as the activity of branches and the number of
changed files.

Sousa, Dillig and Lahiri [20] formally define semantic
conflict freedom and build a tool to verify whether a merge
satisfies these conditions. This tool merges the base version
of a file, two changesets and a merge candidate to identify
differences. The common parts of all four source code versions
are then considered a single program with holes, that at
least one of the versions fills differently from the rest. Using
relational postconditions, their tool finds differences in the
behavior of the four versions.

Finally, Xing and Maruyama [21] propose an approach to
automatically repair behavioral merge conflicts once they are
found. They automate the search for a merged version of two
branches, which satisfies test cases from both branches using
an automated program repair technique.

Many of the older tools presented here record which parts
of the source code developers make changes to and look for
collisions between team members in real-time [8], [12], [13],
[15]. Changes to the same or dependent files can also be
identified using the committed changesets which proved to
be a solid basis for analysis [9].

An evolution of this approach is shown in [1]–[3]: by
compiling and testing the potential merges ahead of time, the
rate of false positives can be drastically reduced. This comes
at a significant cost regarding time and processing power, as
build and test scripts have to be run frequently. Some efforts
have been made to mitigate this cost, such as in [17], [20].
While these approaches present a significant improvement for
small and medium projects, we consider a scale at which the
build process alone would be prohibitively time-consuming.

Static analysis avoids the problem of large build and test
scripts. While the indicators examined in [10] proved ineffec-
tive, [9], [18], [19] suggest methods that may be applicable.
We particularly built on the predictors suggested by Accioly,
Borba, Silva and Cavalcanti [9].

VI. CONCLUSION

We propose and implement an approach to predict higher-
order merge conflicts using static analysis and evaluate it on
the SAP HANA project. The use of static analysis along with
the reusing of previously parsed data allows our prototype
scaling to large projects, where building and testing the
program is too time-consuming to keep up with the rate of
development. The trade-off is a high computation time during
the first execution, or in case the previously parsed data is
lost. Our prototype makes use of the C++ parser srcML to
create a static call graph and identifies potential conflicts on
the level of units, which can be uniquely identified by their
name. The distance between conflict parties can be fine-tuned
both on unit and file level, and we empirically determine the
most promising settings for our repository.

This prototype is evaluated on known build conflicts and
reaches a recall rate of 62%, with the success being largely

dependent on whether or not the names of the conflicting units
have changed. On a small selection of 22 real-life executions
with 8.5 merges on average, the rate of false alarms was 9%.
For test conflicts (which are likely to be caused by changes
to the behaviour rather than the name of a code segment) our
prototype should be able to achieve a higher recall rate.

Despite these promising results, we found no test conflicts in
over two months of development work. In the same timespan,
eight build conflicts were recorded. These results suggest that
in our setting test conflicts are much rarer than build conflicts.

In conclusion, our prototype shows promising results on
build conflicts while mostly avoiding the anticipated problem
of false positives despite its numerous limitations. However,
for small and medium sized projects with good test cover-
age dynamic tools might provide significantly more accurate
results at comparable or better runtime.

To validate our findings (or lack thereof) on test conflicts,
one could apply this approach to find test conflicts reported by
Brun, Holmes, Ernst and Notkin [5] and Kasi and Sarma [8].
This would help to determine whether the lack of test conflicts
was due to specific properties of SAP HANA, or whether it
can be traced back to our approach.

The prototype itself also could be improved in various ways.
One option is to use a more reliable call graph. By creating
a call graph during the build process one would loose the
speed of static analysis, but it would still be possible to skip
the testing process, which may be enough depending on the
size of the project. The call graph could also be refined by
considering the type of unit during graph construction (our
current prototype uses only names to identify units).

REFERENCES

[1] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Crystal: Precise and
unobtrusive conflict warnings,” in Proceedings of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, (New York, NY, USA), pp. 444–
447, ACM, 2011.

[2] M. L. Guimarães and A. R. Silva, “Improving early detection of software
merge conflicts,” in Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, (Piscataway, NJ, USA), pp. 342–352,
IEEE Press, 2012.

[3] F. Pastore, L. Mariani, and D. Micucci, “Bdci: Behavioral driven conflict
identification,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, (New York, NY,
USA), pp. 570–581, ACM, 2017.

[4] T. Wuensche, A. Andrzejak, and S. Schwedes,
“Prototype sourcecode.” https://github.com/tbwuensche/
Detecting-Higher-Order-Merge-Conflicts-in-Large-Software-Projects.

[5] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection
of collaboration conflicts,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, (New York, NY, USA), pp. 168–
178, ACM, 2011.

[6] M. L. Collard, J. I. Maletic, M. Decker, B. Bartman, C. Newman,
D. Guarnera, P. P. Leyden, C. Bryant, V. Zyrianov, M. Weyandt,
H. Guarnera, B. Kovacs, P. E. Jordan, A. Myers, T. Sage, and K. Swartz,
“srcml.” https://www.srcml.org/. Accessed: 18.12.2018.

[7] M. Mahmoudi, S. Nadi, and N. Tsantalis, “Are refactorings to blame? an
empirical study of refactorings in merge conflicts,” in 26th IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering,
SANER 2019, Hangzhou, China, February 24-27, 2019 (X. Wang, D. Lo,
and E. Shihab, eds.), pp. 151–162, IEEE, 2019.

[8] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict minimization
through optimized task scheduling,” in Proceedings of the 2013 Inter-
national Conference on Software Engineering, ICSE ’13, (Piscataway,
NJ, USA), pp. 732–741, IEEE Press, 2013.

[9] P. Accioly, P. Borba, L. Silva, and G. Cavalcanti, “Analyzing conflict
predictors in open-source java projects,” in Proceedings of the 15th
International Conference on Mining Software Repositories, MSR ’18,
(New York, NY, USA), pp. 576–586, ACM, 2018.

[10] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen, “In-
dicators for merge conflicts in the wild: Survey and empirical study,”
Automated Software Engg., vol. 25, pp. 279–313, June 2018.

[11] P. Accioly, P. Borba, and G. Cavalcanti, “Understanding semi-structured
merge conflict characteristics in open-source java projects,” Empirical
Software Engineering, vol. 23, p. 2051, Aug. 2018.

[12] A. Sarma, Z. Noroozi, and A. van der Hoek, “PalantÍr: Raising aware-
ness among configuration management workspaces,” in Proceedings of
the 25th International Conference on Software Engineering, ICSE ’03,
(Washington, DC, USA), pp. 444–454, IEEE Computer Society, 2003.

[13] P. Dewan and R. Hegde, “Semi-synchronous conflict detection and
resolution in asynchronous software development,” ECSCW 2007, Jan.
2007.

[14] R. Hegde and P. Dewan, “Connecting programming environments to
support ad-hoc collaboration,” in Proc. 23rd IEEE/ACM Int. Conf.
Automated Software Engineering, pp. 178–187, Sept. 2008.

[15] L. Hattori and M. Lanza, “Syde: A tool for collaborative software
development,” in Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ICSE ’10, (New York,
NY, USA), pp. 235–238, ACM, 2010.

[16] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Speculative analysis:
Exploring future development states of software,” in Proceedings of
the FSE/SDP Workshop on Future of Software Engineering Research,
FoSER ’10, (New York, NY, USA), pp. 59–64, ACM, 2010.

[17] H. V. Nguyen, M. H. Nguyen, S. C. Dang, C. Kästner, and T. N. Nguyen,
“Detecting semantic merge conflicts with variability-aware execution,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, (New York, NY, USA), pp. 926–929,
ACM, 2015.

[18] M. Dias, G. Polito, D. Cassou, and S. Ducasse, “Deltaimpactfinder:
Assessing semantic merge conflicts with dependency analysis,” in
Proceedings of the International Workshop on Smalltalk Technologies,
IWST ’15, (New York, NY, USA), pp. 8:1–8:6, ACM, 2015.

[19] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma,
“An empirical examination of the relationship between code smells
and merge conflicts,” in Proceedings of the 11th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement,
ESEM ’17, (Piscataway, NJ, USA), pp. 58–67, IEEE Press, 2017.

[20] M. Sousa, I. Dillig, and S. K. Lahiri, “Verified three-way program
merge,” Proc. ACM Program. Lang., vol. 2, pp. 165:1–165:29, Oct.
2018.

[21] X. Xing and K. Maruyama, “Automatic software merging using auto-
mated program repair,” in Proc. IEEE 1st Int. Workshop Intelligent Bug
Fixing (IBF), pp. 11–16, Feb. 2019.

