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Abstract—Unit tests in object-oriented programming
languages must instantiate objects as an essential part
of their set-up. Finding feasible method-call sequences
for object creation and selecting a most desirable
sequence can be a time-consuming challenge for de-
velopers in large C++ projects. This is caused by the
intricacies of the C++ language, complexity of recurs-
ive object creation, and a large number of alternatives.

We confirm the significance of the problem by ana-
lysis of 7 large C++ projects and a survey with 143 prac-
titioners. We then design an approach for recommend-
ing method-call sequences for object creation that align
with criteria gathered by the survey. Our approach
exploits accurate and efficient compiler-based source
code analysis to build an object dependency graph that
is processed by a divide-and-conquer algorithm.

An evaluation on a large industrial project shows that
our tool find solutions that require in 99% of 1104 cases
identical or fewer objects compared to manually craf-
ted solutions. Developer feedback and manual analysis
confirm these results. Moreover, solutions found by our
tool require up to 6 times fewer objects on average
compared to approaches from prior work.

Index Terms—object creation, testing, c++

I. Introduction
Object-oriented programming languages are widely used

today [1–3]. Unit testing in such languages requires to
initialize both objects under test and objects used as
parameters. This is typically achieved by appropriate
sequences of method-calls to create and mutate objects.
In programming languages like C++ with a rather strict
type system, it can already be challenging to find suitable
method-call sequences to only create an object. Private
constructors can require to detect non-obvious alternatives
to create an object. Even more, creating an object might
require recursive creation of additional objects and each of
them can have a variety of alternatives for creation.

In such complex cases, developers must analyze the
dependency hierarchy for a targeted object to (i) find
feasible method-call sequences (in short sequences) for
creating it, and then (ii) select a sequence they consider
‘optimal’. Focusing only on instantiating objects, we call the
challenges (i) and (ii) the object creation problem (OCP).

In the context of unit testing, a wide range of research
work proposed techniques for generating method-call se-
quences to set-up objects into a desired state [4–11]. In
addition to these sequence generation methods, there are
also direct construction methods [12]. These work focus
on achieving a desired object state, assuming that finding

code for object creation is trivial. However, through our dis-
cussions with developers of SAP HANA, a large database
system written in C++ [13], we noticed a high development
effort for solving the OCP. The developers reported that
finding and implementing object creation code as a part of
unit test writing consumes a considerable amount of time.
Interestingly, setting up an object state after its creation
was typically considered a simpler task. We attribute the
neglecting of the OCP in the literature to the relatively
small project sizes that are used in evaluations and to the
prevalence of other programming languages such as Java
or C# in these previous work.

In this work, we first study the significance of the OCP
and characteristics of suitable solutions by analyzing the
code of large C++ projects and by conducting a survey
with practitioners. Based on these results, we propose and
evaluate an approach that suggests sequences of method-
calls for object creation in C++ according to desired criteria.
Our contributions are in detail:

∙ Confirming the significance for the OCP in 7 large
C++ projects via static code analysis, and via survey
results from 143 professional developers.

∙ Characterizing preferences of developers for object
creation code based on the above-mentioned survey.

∙ An approach to suggest method-call sequences for ob-
ject creation that considers the identified preferences.

∙ An evaluation on 7 large C++ projects analyzing the
effectiveness and demonstrating the improvements
compared to previous work.

This work is organized as follows. Section II motivates,
Section III describes the survey, and Section IV shows our
approach. Section V contains the evaluation, in Section VI
we discuss the threats to validity, and in Section VII we out-
line related work. Section VIII provides the conclusions.

II. Motivation
We show by examples how typical patterns of C++ source

code can complicate the creation of objects.
Constructors: In Listing 1 we can create an object

of type CA by calling the public constructor. We can
instantiate CB by calling the public default constructor,
which is implicitly generated [14, Clause 15]. Hence, a
developer must know the definitions for implicitly-defined
C++ default constructors in the C++ standard [14], which
can be non-trivial in some cases. CC shows such a case. The
object cannot be created with normal language constructs.
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Listing 1: Three
simple classes.

1 class CA {
2 public :
3 int a;
4 CA(int a)
5 :a(a){
6 /* ... */
7 }
8 };
9 struct CB {

10 int a;
11 };
12 class CC {
13 int& a;
14 public :
15 int id;
16 };

Listing 2: Object creation and inheritance.
1 class Base{
2 protected :
3 Base(int m) {/* ... */ }};
4 struct Derived : public Base{
5 Derived (int n) {/* ... */}
6 Derived (CC& c) {/* ... */ }};

Listing 3: Object creation via factory pattern.
1 class P {
2 friend class PF; // a friend of P
3 P(int id) {/* ... */ }};
4 struct PF {
5 PF(int id) : id(id) {}
6 PF(CC& c) : id(c.id){/* .. */}
7 unique_ptr <P> createP () {
8 return unique_ptr <P >( new P(7));
9 }};

CC has no default constructor (the member a is a reference),
and list-initialization is not possible (a is private) [14].

Derived Class: In Listing 2, an object of type Base
cannot be created directly due to the non-public visibility
of the constructor and absence of a default constructor [14].
However, inheritance allows us to use Derived for Base.
We have two options to create an object of type Derived.
We might select the Derived(int) constructor because
the second constructor depends on additional objects.

Factory Pattern: In Listing 3, we are unable to create
an object of type P directly as the only constructor is
private. However, the class P declares PF as a friend.
Therefore, the private constructor of P can be called
from PF. Hence, to create an object of type P, we must
discover the friend relationship to PF, identify and call
PF::createP(), and recognize that the return type, a
smart pointer, provides access to the desired object.

Conclusions: Object creation can be a difficult task
even for short C++ programs. Large projects can have
recursive object dependencies with several alternative
options at each recursion level, resulting in a huge search
space. Therefore, creating objects can be a time consuming
task for developers in large projects.

III. Collecting Data from Users
We describe here the conducted interviews and a survey.
Exploratory Interviews: We conducted the following

experiment with 3 developers from SAP for 90 min each.
In the first half, we observed the developers at heir work
while they create unit tests. We noted their steps, and
we qualitatively assessed the amount of time required
by each step. In the second half, we interviewed the
developers whether our observations were correct. Based
on this data we created a list of their distinct activities
with associated (relative) time requirements. The survey
described below uses this list. We omit further descriptions
of the interviews because they were only explorative while
the survey provides the empirical foundation for our work.

Survey: We designed an electronic survey [15] where
we ask the developers to rate the effort of different steps
for unit test creation and to rate the importance of

different criteria to select amoong different options for
object creation. We then conducted a trial run with 10
developers of SAP. Based on the results of this trial run and
discussions with the participants we selected the specific
formulations of the questions and the scale of the rating.
For example, the trial group preferred the −3 . . .+3 rating
scale over an initially proposed relative ranking.

The survey contains two questions shown in Table I.
Each question has multiple items with 7-item Likert scales
and a free text box for additional comments [15]. Table I
shows all items of the second question based on the exper-
ience of our industry partner and related literature [16, 6].
The first question has as items 10 steps of the test
creation process that we derived from information gained
by the interviews: 1) understanding of the source code,
2) necessary refactoring of the code to make it testable,
3) conceiving test cases, i.e., thinking about possible input
data and test oracles, 4) object creation/instantiation,
5) object state preparation, 6) mock creation, 7) writing
test code (including test framework/build system code),
8) refactoring of the test code, 9) compilation/linking of
test code, and 10) executing and testing test code.

Survey Participants: We target professional C++

developers. SAP sent the survey to 1 185 recipients across
multiple global C++ development teams. We assume the
most participants are from Germany, North America, and
Asia. Due to concerns related to European privacy laws, we
have no details about cultural and experience distribution.

Results: We received 143 responses (participation rate
of 12 %). Not all recipients rated all items, therefore the
number of ratings varies between 116 to 133. For the first
free text box, we found 15 texts, and 6 for the second.

Table I presents the results. For the first question we
ordered the 10 items (the steps of a test creation) by the
mean of the responses. This yielded the following ranking
of the items in descending order: 2, 6, 1, 4, 3, 7, 5, 8, 9, 10.
The step ‘object creation’ is the fourth highest rated item.
Higher rated items are (with corresponding arithmetic
mean): ‘code refactoring’ (1.75), ‘mock creation’ (1.19),
and ‘understanding of the source code’ (0.88).

For the second question, the highest ranked criterion
is ‘minimal dependencies’, whereas ‘first working solution’
is ranked lowest. Interestingly, even though mutability
simplifies the state preparation, the criteria ‘objects should
be mutable’ is ranked relatively low.

The second free text box contained mostly opinions
about testing in general. Two valuable remarks are that
multiple product lines require additional effort and objects
that change the global state should be avoided.

Interview and Survey Results
Professional developers in a large C++ project consider
(a) time effort for implementing object creation as high,
and (b) the minimal amount of dependent objects as
the most important criterion for selecting a method-call
sequence for object creation.



Table I: Survey questions and results. Column 𝑛 indicates how many participants have rated the corresponding item.

Items Rating Mean Median 𝑛

Question 1: Which aspects of implementing unit tests in SAP HANA require considerable time effort?

4) Object creation/instantiation for source code under test. 0.83 1 133

low time effort -3 -2 -1 0 +1 +2 +3 high time effort

Question 2: If there are multiple options for object creation within a unit test (e.g., several constructors, factory methods), which criteria
are important to select one option?
1) The amount of dependent objects should be minimal, e.g., constructors
with fewer additional object-type arguments are preferred. 1.73 2 120

2) The state of objects should be as mutable as possible to modify the
objects during tests. 0.40 1 119

3) The object is created in the same way at other places in the productive
source code. 1.09 1 120

4) The object is created in the same way at other places in the test code. 0.60 1 119

5) The objects should be related to the code under test, i.e., the distance
between code under test and source code for the object should be minimal. 1.48 2 119

6) The objects should not be complex, i.e., metrics such as the cyclomatic
complexity (understood as the complexities of the methods) or coupling
should be minimal.

1.15 2 119

7) It should work at all, i.e., the first working solution is good enough. −0.13 0 116

not important -3 -2 -1 0 +1 +2 +3 very important

Figure 1: The phases of our approach.

IV. Approach

Fig. 1 provides an overview of our approach to solve the
object creation problem (OCP). The OCP asks to find a
method-call sequence which instantiates an object of a
desired type 𝑇 such that the sequence satisfies or optimizes
given criteria. Here, we focus on the OCP and do not
consider mutating the created object into a specific state.

An object in C++ is typically obtained by calling a
constructor or a factory method. The OCP is easy to solve
if such ‘creators’ have no parameters. Otherwise, we may
have to instantiate multiple parameters of a creator and
have to recursively solve the OCP for each of them. This
process can unfold in different ways, yielding alternative
method-call sequences, each able to instantiate an object
of a desired type. Without explicitly enumerating all
valid sequences, we search for one which optimizes certain
criteria (see Section III). We call such a sequence a solution.

Figure 2: Top nodes of a dependency graph for Listing 2.

Base
Constructor
Derived(int)

Constructor
Derived(CC)

𝑏𝑦 𝑏𝑦

A. Object Creators and Dependency Graphs
For a given type, let 𝑆𝑐 be the set of all functions which

provide an instance (object) of this type, e.g., constructors
or methods (see Section IV-B). We call such a function an
(object) creator for a given type. In Fig. 2, type PF has
two creators: constructors PF(int) and PF(CC).

A dependency graph 𝐺 for a desired type 𝑇 is a directed
acyclic graph with the following properties. All nodes of 𝐺
correspond to either types or object creators. For a node 𝑣𝑡

corresponding to a type 𝑡 and each creator 𝑐 of 𝑡, 𝐺 has a
node 𝑣𝑐 (corresponding to 𝑐), and an edge 𝑣𝑡 → 𝑣𝑐 labelled
with ‘by’. For each node 𝑣𝑐 and each required parameter
𝑝 of 𝑐, 𝐺 has a node 𝑣𝑝 corresponding to a type of the



Figure 3: Dependency graph for Listing 3.
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parameter 𝑝, and an edge 𝑣𝑐 → 𝑣𝑝. We label such edges as
‘required’ (or ‘req’ for short) and specify what is required,
e.g., the parameter name or the class instance. 𝐺 might also
have special nodes unknown linked from each type without
any creator. Finally, there is a (root) node corresponding
to the targeted type 𝑇 . Given 𝐺, we define the size of 𝐺
as the number of ’type’-nodes. Fig. 3 shows a dependency
graph for a targeted type 𝑃 from Listing 3 with size 4.

Our approach has a (one-time) preprocessing phase
to determine all creators for each type in the source
code (Section IV-B). Given as input a desired type to
be instantiated, we construct a corresponding dependency
graph for this type (Section IV-C) and determine a solution
via graph traversal described in Section IV-E.

B. Searching for Object Creators
We determine all creators for any type available in

the source code by static analysis. To this purpose, we
implemented a plugin for Clang, a C++ frontend for the
LLVM compiler infrastructure [17]. The plugin extracts all
data during compilation resulting in accurate data even in
the case of multiple compilation stages where or complex
preprocessor directives where the final source code for
compilation is generated by other source code generation
programs. The data contains all identified object creators
and additional information for them such as order and
types of parameters. In the following, we describe which
language concepts are analyzed.

For a given type 𝑇 , let 𝑆𝑐 be the set of object creators
for 𝑇 . To simplify the presentation, we (a) use the term
class also for struct and union [14, Clause 12], (b) shorten
type 𝑇 or class 𝑇 to 𝑇 , and (c) do not distinguish between
references/pointers to an object and the object itself.

Constructors: We add to 𝑆𝑐 all useful constructors
for 𝑇 and consider them technically as functions. A con-
structor is useful if it has public visibility, no attribute
deleted, and is no copy or move constructor [14].

Inheritance: We add to 𝑆𝑐 all accessible constructors
for any subtype (multi-level, acyclic [14, Cl. 13]) of 𝑇 .

Factory Method Pattern: We include in 𝑆𝑐 all access-
ible static methods that return an object of type 𝑇 . We
ignore non-static methods. They are rarely useful because
the underlying object must be created. They are only useful
in the case of friends that we handle separately.

Friends: C++ allows a class to declare other functions or
classes as friends. Friends can access non-public functions

and members of the class declaring the friend [14]. We add
to 𝑆𝑐 all methods that provide an instance of 𝑇 and are
marked as friends, or are defined in friends-classes of 𝑇 .

Smart Pointers: A smart pointer is a data structure
that wraps a pointer in C++ and provides additional
functionality such as automatic memory management.
We ‘shorten’ the indirection of smart pointers [14, 23.11]
which seem to appear frequently in modern C++ code. E.g.,
for Listing 3, we use P instead of unique_ptr<P>. We
detect such smart pointers by identifying the standard
implementation cases and by providing a list of custom
implementations of the corresponding project.

Output Parameter: Objects can be created by an out-
put parameter pattern where a parameter value provided
by the caller as input to a function is modified by the callee.

Listing 4: Output parameter.
void init1 (T** o1){

*o1 = new T(5);
}
void init2 (O2& o2){

o2.setT(new T(7));
}

Listing 4 shows two examples
of this pattern, init1 and init2.
The first uses call-by-reference,
the latter call-by-sharing. It is
challenging to accurately detect
such cases in general. Consid-
ering all functions with adequate parameters would be
misleading and requires further analysis. The decision
problem whether a specific part of the code will be executed
is rather complex and in general undecidable [18].

We use a heuristic that reports a function if any para-
meter is of type 𝑇 and the body contains a constructor
call for 𝑇 . However, due to false positives, we do not
include such results in 𝑆𝑐 automatically but report them
to developers for manual investigation.

Public Members: A second class 𝑈 can contain a
public member 𝑀 of type 𝑇 . We do not consider using
𝑀 to be an intended way to create/access a desired object
and therefore ignore it. Also, for creating 𝑇 , 𝑈 must use
any of the detectable variants described before.

Static Casts: It is possible to create an instance of 𝑇 by
a static cast of another object. C++ allows such casts [14,
8.4] and also allows a memory copy without further type
checks [14, 6.9, item 2]. However, such an approach could
create incorrect states of objects in memory [19, 14] and
is therefore not considered in 𝑆𝑐.

C. Constructing a Dependency Graph
Given the creators of all types, we can create a de-

pendency graph for a type 𝑇 . We start with a root node
corresponding to 𝑇 (node of level 0), and retrieve all
creators of 𝑇 . Each of them gives rise to a new ’creator’-
node 𝑣𝑐 (level 1), and an edge between root and such a
’creator’-node. Then for every parameter 𝑝 of a ’creator’-
node 𝑣𝑐 from level 1 we retrieve the type 𝑡 of the parameter
𝑝, and create a (level 2) ’type’-node 𝑣𝑡 together with an
edge 𝑣𝑐 → 𝑣𝑡 (see graph definition in Section IV-A). This
process then repeats recursively for each newly created
’type’-node (on the levels 2, 4, . . .) until any of the following
stopping criteria is met: 1) 𝑣𝑡 has no creators. 2) 𝑣𝑡 is
fundamental, enum or function. 3) 𝑣𝑡 is included in a white



Listing 5: 𝐴𝐿𝐺𝑜 to find a solution for a given type. Function minSize
returns a non-empty argument with smaller size.

1 def ALG_o (’creator ’-Node vc)
2 Node result = copy of vc
3 for each parameter t of vc
4 Node solution = unknown # is empty
5 for each creator c of t
6 Node newSolution = ALG_o (c)
7 solution = minSize (solution , newSolution )
8 append solution to result
9 return result

list (a list that contains types for which we pre-define
solutions, e.g., types that may have a large number of
creators but are in fact simple to create). 4) 𝑣𝑡 is included
in a list of objects to mock (if a mock object should be used
instead of the original object). 5) 𝑣𝑡 is defined outside of
the software project. 6) 𝑣𝑡 is already processed (to prevent
cycles). 7) The corresponding parameter is unnamed or has
a default argument. 8) The number of creators is larger
than a predefined threshold, e.g., 100 (such a large list
may contain a suitable creator). 9) The recursion depth
is larger than a predefined threshold, e.g., 5 (we do not
expect any practical results at such depths).

D. Valid Method-Call Sequences
The dependency graph for type 𝑇 allows finding all

method-call sequences which instantiate 𝑇 . There can be
many such sequences. For example, in Listing 2, there are
two sequences: one using the constructor Derived(int),
and another using the constructor Derived(CC).

In general, a valid sequence corresponds to a subgraph
𝐻 of a dependency graph with certain properties: 1) 𝐻
contains the root node. 2) For every included ’type’-node
𝑣𝑡, 𝐻 has exactly one child (a creator). 3) For each included
’creator’-node 𝑣𝑐, 𝐻 contains all child nodes. 4) All leaves
(’type’-nodes without descendants) correspond to types
that can be created without requiring additional objects.

For practical use, we do not need to explicitly enumerate
all valid sequences in a dependency graph. Instead, we can
compute a single sequence that optimizes desired criteria,
using the dependency graph as input.

E. Finding Solutions via Graph Traversal
We describe an algorithm that finds a solution for the

OCP of a type 𝑇 , i.e., a method-call sequence optimizing
certain criteria. Following the results of the survey in
Section III, our objective is fixed as the minimal number
of dependencies, or ‘size’ of a sequence.

A solution is a subgraph of a dependency graph. There-
fore, the size follows the definition given in Section IV-A
and is the number of ’type’-nodes. For instance, Fig. 3
shows that the (unique) valid sequence for 𝑃 has size 3,
and the solution contains the types {P, PF, int}.

A solution is thus a sequence with a minimum size
over all valid sequences. Listing 5 shows pseudocode of
a divide-and-conquer algorithm to find a solution. 𝐴𝐿𝐺𝑜

recursively finds a minimal subgraph and returns a solution

Table II: List projects for evaluation.

Project #Obj. Types #Functions SLOC

SAP HANA 2018-11-24 735 194 4 210 541 11 065 382
Boost 1.66 [22] 30 548 53 528 4 392 925
CERN ROOT 6.13/08 [23] 100 705 730 507 3 417 362
Firefox 55.0.3 [24] 134 554 940 346 7 343 242
LLVM Clang 6 [25] 88 913 591 112 242 032
MySQL 8.0.11 [26] 54 360 199 692 3 791 989
ScummVM 2.0.0 [27] 13 527 148 350 1 830 628

(corresponding to a desired sequence) if it exists. Note that
the algorithm can be easily modified to return multiple
ranked recommendations.

𝐴𝐿𝐺𝑜 has the following properties: 1) It is a divide-and–
conquer algorithm [20] by design. 2) We can use multiple
threads for parallel execution. 3) We can re-use results for
recursion. 4) We can use a branch and bound approach [20]
to avoid descending recursion if a better solution is known.
5) The function minSize (line 7 in Listing 5) can be
replaced to supports different optimization criteria.

V. Evaluation
We investigate multiple research questions (RQ). First,

we analyze the results of the search phase and characterize
the studied projects (RQ1). Then, we study the existence
of solutions (RQ2). Finally, we verify our solutions (RQ3),
and compare our approach against related work (RQ4).

A. Evaluation Setup
We searched for large C++ software projects on GitHub,

related literature and publicly available lists. We filtered
the list of possible projects based on the following criteria.
The project 1) uses C++ as the main programming lan-
guage, 2) supports compilation with Clang, 3) has more
than 10 000 different object types (it is ‘large’).

The resulting list contains 7 projects, see Table II. We
measured the source lines of code (SLOC) with cloc [21].
More projects might fulfill these criteria, as we could not
adapt some projects to compile with our plugin. Addi-
tionally, we pre-selected projects based on their expected
number of types, i.e., we did not create statistics for all
projects due to the required effort for the adaption to Clang
compilation required by our Clang plugin.

We use a system with 4 processors, 160 cores with
2.10 GHz, and 1 TiB RAM. The Clang plugin increases the
compilation time by a factor of 1.20 and generates 27 GiB
of data for SAP HANA and 0.20 GiB to 8 GiB for the
other projects. For practical reasons, SAP HANA requires
parallel compilation. This would increase the intermediate
data size to 4 TiB. Therefore, we implemented lock-free
duplicate filtering to mitigate this issue. We consider these
overheads acceptable for practical purposes. The execution
time of our algorithm 𝐴𝐿𝐺𝑜 (Listing 5) is below a second.
This is considerably faster than a manual search, which
can require more than 10 min per case according to our
observations during the interviews with developers.



Table III: Distribution of default constructors. E.g., 94.56 % of all
classes in MySQL with 1-4 lines have a default constructor.

Size Groups [LOC]

Project 0..4 5..49 50..∞ All

SAP HANA 83.64 63.82 52.91 68.98
Boost 96.00 82.88 69.15 85.92
CERN ROOT 88.15 81.18 59.31 79.76
Firefox 93.49 79.02 81.32 83.24
LLVM Clang 87.26 79.62 56.55 77.55
MySQL 94.56 89.40 68.91 87.98
ScummVM 97.37 61.69 69.42 70.83

B. Search Phase and Project Characteristics
RQ1 What is the variety of types and the distributions of

object creators found in the search phase?
For each project in Table II, we count the number of

object types and their creators, the size of classes, and the
presence of default constructors (DC ).

Object Types, DC, and Class Sizes: We count each
class as an object type. For class templates, we count
explicit and implicit class template instantiations [14].
Table II presents the results. Table III shows for each class
(a) the size 𝑛 = 𝑙𝑖𝑛𝑒𝐸𝑛𝑑 − 𝑙𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡 + 1 grouped into
small (𝑛 < 5), medium (5 ≤ 𝑛 < 50), and large (50 ≤ 𝑛)
as reported by our Clang plugin, and (b) whether it has a
DC. Technically, a DC exists, if the existence is reported
by the compiler and it is not marked as deleted [14].

Creators: For each object type T, we collect the set 𝐶𝑇

of all creators and count |𝐶𝑇 |. In our dependency graph,
|𝐶𝑇 | is the number of nodes connected with a by-edge from
T. For Fig. 3, PF has 2 creators. Fig. 4 presents the results.

Discussion: Fig. 4 shows that the search phase finds
at least one creator for 93 % to 99 % of all object types.
Among all projects, Clang has the highest percentage of
empty results (7 %). We conclude that the search phase
provides reasonable results. A manual investigation of
examples with empty solutions shows mainly cases where
we were also unable to find solutions manually or where
an object was used within a class-internal usage scenario.
Further work is required to characterize such cases.

At least 6 % to 20 % of all object types and 16 % to 38 %
of all large classes have more than 1 creator. As shown
in Section II, it might be complex to find even 1 creator.
These results confirm the relevance of the OCP.

The most frequent cardinality is 1 due to the presence of
DC in small classes. Table III shows the distribution of DC
in different size groups of classes. It is rather common for
small classes to have a DC. Large classes often do not have
default constructors, but multiple creators. This indicates
that our approach is more effective for large classes.

Answer RQ1
We find creators for 93 % to 99 % of all object types. The
most frequent result is a single creator. We find more
than one creator for 6 % to 20 % of all object types.

Table IV: Results for all functions. Solved percentage of functions
and the arithmetic means for the dependency graph sizes (DG), the
solution sizes (S), and the number of arguments (args).

Project %Solved |𝐷𝐺| |𝑆| |𝑎𝑟𝑔𝑠|

SAP HANA 97.98 11.36 2.20 1.63
Boost 98.31 4.56 1.78 1.47
CERN ROOT 96.11 14.49 1.85 1.18
Firefox 97.16 15.16 1.95 1.39
LLVM Clang 94.74 18.96 2.03 1.28
MySQL 98.38 9.10 2.24 1.59
ScummVM 99.89 5.19 1.56 1.17

C. Existence of Solutions
RQ2 What is the fraction of functions where our approach

can successfully find solutions for all arguments?
In practice, it is important to create all arguments of a

function, which may require instantiating multiple different
object types. Therefore, we switch our focus from objects
to functions. In this section, we define a dependency graph
(DG) of a function 𝑓 as a union of dependency graphs for
the types of each (required) parameter of 𝑓 . Analogously, a
valid sequence/solution for 𝑓 is the union of the respective
concepts over all parameters of 𝑓 . In other words, we
introduce ana artificial root node, consider 𝑓 as an creator
for this root and apply our approach accordingly.

Functions: Our Clang plugin reports all functions
generated by the compiler. This includes static functions,
object member methods, lambdas, and each function
template instantiation. Table II presents the results.

Size of Dependency Graphs (DG) and Solutions:
We apply our approach to each function and obtain a

dependency graph 𝐷𝐺 and a solution 𝑆. Fig. 5 shows
for all functions in each project the sizes of 𝐷𝐺 and 𝑆.
Table IV presents the percentage of functions %𝑆𝑜𝑙𝑣𝑒𝑑
where our approach finds a solution and, over all functions,
the average of the solution size |𝑆|, the graph size |𝐷𝐺|,
and the number of parameters |𝑎𝑟𝑔𝑠|.

Discussion: Table IV indicates that our approach finds
full solutions to create all arguments for 94 % to 99 % of all
functions. Fig. 5 shows that the solution size (Section IV-E)
is typically rather low compared to the size of 𝐷𝐺. The
average solution size |𝑆| is slightly larger than |𝑎𝑟𝑔𝑠|, which
is expected. Unnamed arguments rarely occur in our data.
Fig. 5 also indicates a rather large amount of functions
with large 𝐷𝐺 sizes above 99. In some rare cases, the
size is larger than 100 000. This aligns with our original
motivation, that a manual inspection of the full space of
possible solutions is either not practical or even not feasible
in a reasonable amount of time. However, our search phase
may collect object creators that would be discarded directly
by a developer. Such cases artificially increase |𝐷𝐺|.

We manually investigated unsolved functions. They
contain in no particular order: (a) templates, (b) types
defined but not implemented, (c) types provided by the
operating system (d) types that were supposed to be non-
constructable, and (e) types we found no way to manually



Figure 4: Histogram for number of object creators per type (x-axis in log-scale). E.g., for Boost, the search phase finds no creator in 1 236
cases and exactly 1 in 27 306 cases.
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Figure 5: Dependency graph sizes — and solutions sizes — (x-axis in log-scale). E.g., Boost has 2 169 functions with dependency graph sizes
in range 30-49, and only 3 functions with solution sizes in this range.
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construct them. We expect that fine-tuning the system
with domain knowledge could improve (b), (c), and (d).
A more sophisticated template analysis, which might be
rather complex [28], may improve (a).

Answer RQ2
Our algorithm for object creation finds at least one
solution to create all required objects for 94 % to 99 %
of all functions in the evaluated projects.

D. Verification of Solutions
RQ3 How do the solutions found by our approach compare

to manually found solutions with respect to the most
important criteria identified?

We compare object creations by developers found in
the source code of SAP HANA versus those automatically
proposed based on preferences stated by developers in
our user study. The comparison involves manual tasks,
therefore we evaluate only a subset of all object creations.
To collect these examples, we extend our static analysis to
report all locations in the source code where an object is

created. We then filter them by a selection process and
analyze the results. Additionally, we a) ask developers
of SAP HANA to propose multiple problem instances
and evaluate corresponding solutions, and b) manually
investigate problem instances for the other projects.

Selection of Examples: We apply the following filter-
ing steps: 1) SAP HANA consists of about 300 components
that can be considered as own projects. We randomly
select a set 𝐶50 of 50 components. 2) For each item in
𝐶50, we collect the set 𝑂𝐶 of all source code locations
where objects are created. 3) We only keep items in 𝑂𝐶
where all of the following conditions are true: file extension
∈ {cpp, cc, h, hpp, inl, inc, incl, hh, c}, source filename con-
tains ‘[T/t]est’ (test code), object not in namespace testing
(test framework) nor std (standard library) nor X where
X is an internal reimplementation of the standard library.
4) After filtering 𝑂𝐶, we randomly select a set 𝑂𝐶50 of up
to 50 items. 5) We analyze each item in 𝑂𝐶50, and remove
those that create artificial test objects such as a testfixture
or a mock. This results in a final set of examples for each
component. Table V reports statistics for each step.



Table V: Selectivity of the examples selection. We use the annotation
(min/max/mean) for the statistics, e.g., (1/11/6) for {1, 5, 7, 11}.

Step Statistics After the Step

(0) Start 3 539 879 object creations
(1) 50 random components #files: (2/1 311/267)
(2) Object creations 661 886 object creations
(3) Filter step 113 081 object creations

per component: (0/17 086/2 262)
(4) 50 random examples 19 components with 0 examples
(5) Remove test objects 1 104 object creations

per component: (0/49/22)

Categorization: For each example, we apply our ap-
proach and generate a solution. We compare this solution
to the manual object creation indicated by the existing
source code. Table VI reports the results.

Out of 1 104 analyzed examples, the category Shorter
contains 594 items, Identical 505 items, and Longer 5 items.
Within Shorter, there are 113 cases where the solution
used source code where the last change date is after the
existing object creation, and in 481 cases before. Within
Identical, there are 179 cases where the solution used source
code where the last change date is after the existing object
creation, and in 326 cases before.

Date Analysis: Source code changes could impact the
retrospective analysis. Our approach could propose to
use code that was not available for a manual solution.
Utilizing the version control system to use the specific
version would require recompilations and static analyzes
with an estimated effort of 138 d of execution time and
45 TiB of disk space. Due to limited resources, we instead
extend our analysis to control for the described threat.

We use the version control system to calculate a date 𝐷𝑆

for a solution, i.e., the last date when source code involved
in a solution was modified, and identify the date 𝐷𝑀 the
manual solution was introduced. In Table VI, 𝐷𝑎 reports
number of cases for 𝐷𝑆 > 𝐷𝑀 and 𝐷𝑏 for 𝐷𝑆 ≤ 𝐷𝑀 .

Manual Verification: Developers of SAP HANA pro-
posed 10 recent problem instances, i.e., functions they
wanted to call. One function requires only fundamental
arguments, the others require at least one object, i.e.,
they represent complex scenarios. We apply our approach
and ask the developers to evaluate the results. In 8
cases, they determine the results are identical to their
own solutions. In 1 case, the result is better due to the
correct identification of a default argument in a header
file. In 1 case, our approach found no result. However, the
developers revealed they also found no solution for this
case and a solution probably does not exist. Hence, our
approach found identical or better solutions in all cases.

For each of the other projects, we randomly select 10
object types from files with paths containing the string
[T/t]est. We apply our approach and report the results as a
tuple (smaller/identical/larger) that shows the comparison
of solution sizes found by our approach compared to those
found in the source code. ScummVM, ROOT, and MySQL:

Table VI: Solution sizes of 𝐴𝐿𝐺𝑜 vs. manual solutions.

Category n %𝑇 𝑜𝑡𝑎𝑙 𝐷𝑎 % 𝐷𝑏 %

Total 1 104 100.00 N/A
Shorter (S) 594 53.80 113 19.02 481 80.98
Identical (I) 505 45.74 179 35.45 326 64.55

S or I 1 099 99.55 292 26.57 807 73.43
Longer 5 0.45 N/A

all (0/10/0). Boost: (1/9/0). The smaller case involves
a custom smart pointer that would require special case
handling and domain knowledge of the project. Firefox:
(1/9/0). Clang: (2/8/0). One smaller case is within a test
framework not controlled by the project.

Discussion: In 45.74 % of the 1104 examples for SAP
HANA, solutions found by our approach are identical
to existing solutions and smaller in 53.80 % of all cases.
The 5 larger cases involve complex template metaprogram-
ming [14] and interfaces with a high number of implement-
ations. Still, developers might choose other solutions due
to specific requirements. However, in the context of test
creation, the functionality for objects not under test is
typically not important. Hence, we assume correctness of
our results in such scenarios. Even more, as indicated by
our survey result in Table I, developers consider that the
task ‘object state preparation’ requires less time effort.
Therefore, we assume that this task might be simpler in
large C++ projects compared to object creation.

The date analysis indicates that the impact of code
changes for the retrospective analysis is low. For the cat-
egory identical, the source code of the calculated solution
must have been available at the time the manual solution
was introduced. However, in 35.45 % of all 505 cases,
𝐷𝑆 < 𝐷𝑀 . Hence, 36% is a threshold of expected cases.
For the category smaller, 19.02 % is below this threshold,
confirming the initial statement.

Given the results of the date analysis and considering
the results of the manual verification, we conclude that
our approach is able to propose correct solutions for the
object creation problem in practical cases.

Answer RQ3
In 99.55 % of all 1 104 cases, our approach proposes solu-
tions identical (45.74 %) or smaller (53.80 %) compared
to existing solutions.

E. Comparison Against First-Working Approach
RQ4 How does our approach of a size-minimal solution

compare against a first-working-solution approach?
Methodology: Related work uses the first working

solution that is found, an approach that we identify by
𝐴𝐿𝐺𝑓𝑤. For 𝐴𝐿𝐺𝑓𝑤 in comparison to 𝐴𝐿𝐺𝑜, the function
minSize (line 7 in Listing 5) is replaced by a check whether
the subgraph is non-empty and, if this is the case, the loop
is then aborted. We compare 𝐴𝐿𝐺𝑜 against 𝐴𝐿𝐺𝑓𝑤 in
terms of sizes of solutions for all functions. However, we



Table VII: Comparison between 𝐴𝐿𝐺𝑜 and 𝐴𝐿𝐺𝑓𝑤.

|𝑆|, all 𝑜 ̸= 𝑓𝑤 |𝑆|, ̸=

Project 𝑜 𝑓𝑤 % 𝑜 𝑓𝑤

SAP HANA 3.10 6.81 42.07 4.45 13.26
Boost 2.57 3.90 31.80 3.13 7.31
ROOT 2.94 11.41 56.09 3.87 18.97
Firefox 2.88 5.94 44.69 3.67 10.51
Clang 2.62 11.64 60.17 2.96 17.94
MySQL 3.35 5.91 36.31 4.87 11.92
ScummVM 2.73 3.74 35.02 3.78 6.66

only investigate functions that require additional objects
because all other functions have equal solutions. Addition-
ally, we ignore functions where the return type is also one
of the parameter types. These filtered functions represent
38 % to 68 % of all functions depending on the project.
We do not report the number of solutions for 𝐴𝐿𝐺𝑜 and
𝐴𝐿𝐺𝑓𝑤, as they are indeed identical.

Results: Fig. 6 shows the histograms of solution sizes
|𝑆| for each project and approach. Fig. 7 presents only
the cases where the solution sizes are not equal. Table VII
shows statistics for all cases. The execution time of 𝐴𝐿𝐺𝑓𝑤

is typically lower than 𝐴𝐿𝐺𝑜. However, the graph construc-
tion requires considerably more time compared to finding
a solution that typically finishes within the fraction of
a second. For example, the analysis for Clang shows the
largest execution time with 0.15 s per function on average.
𝐴𝐿𝐺𝑓𝑤 may produce different results depending on the
order of the input. Given the large number of functions,
we expect that this randomness is not a threat, and we
did not further investigate different orders.

Discussion: Fig. 7 shows that size 1 does not occur
for 𝐴𝐿𝐺𝑓𝑤. The design of 𝐴𝐿𝐺𝑜 guarantees |𝐴𝐿𝐺𝑜(𝑓)| ≤
|𝐴𝐿𝐺𝑓𝑤(𝑓)|. We removed all cases where |𝐴𝐿𝐺𝑜(𝑓)| =
|𝐴𝐿𝐺𝑓𝑤(𝑓)|. Hence, 0 < |𝐴𝐿𝐺𝑜(𝑓)| < |𝐴𝐿𝐺𝑓𝑤(𝑓)| and
therefore 1 < |𝐴𝐿𝐺𝑓𝑤(𝑓)| ∀𝑓 .

Over all projects, solutions based on 𝐴𝐿𝐺𝑜 are on
average by a factor 1.37 to 4.44 smaller for all functions
or by a factor 1.76 to 6.07 smaller ignoring functions
with identical solutions for both algorithms. Hence, in
comparison to 𝐴𝐿𝐺𝑓𝑤, 𝐴𝐿𝐺𝑜 can considerably reduce the
amount of objects and therefore decrease the complexity of
solutions. Fig. 7 also shows that 𝐴𝐿𝐺𝑜 effectively reduces
cases with large solutions. Therefore, we conclude that our
approach improves 𝐴𝐿𝐺𝑓𝑤.

Answer RQ4
Solutions by 𝐴𝐿𝐺𝑜 require up to 6 times fewer objects on
average compared to a first-working-solution approach.

VI. Threats to Validity
We discuss several threats to validity for our work.
1) User Study: Participants in the user study may

not have the professional experience to answer the ques-
tions [29]. We reduce this threat by sending the survey
to professional developers. However, we are unaware of

the number of participants without C++ experience. All
participants are related to our industrial partner. However,
we are not aware of any company policy that may influence
our anonymous survey. With respect to diversity, the
recipients are distributed worldwide and have different
professional experience.

The user study might be ambiguous or the lists of items
might be incomplete. We reduce this threat by a trial run.

2) Reliability: We collected a set of 7 projects for our
evaluation. However, the composition did not follow a
reproducible methodology, because we are unaware of a
definitive list of large C++ projects. Due to the regulations
of our industry partner, the implementation of our ap-
proach is not publicly available and an exact reimplement-
ation of our approach may not be feasible. We carefully
tested our implementation with an extensive test suite of
collected C++ code examples and therefore expect that the
conclusions are reproducible.

3) Construct Validity: Our evaluation contains a retro-
spective analysis. We are unaware of the reasons why a
specific object creation option was selected in the past or
whether such preferences have changed over time. A/B
testing could mitigate this threat. However, it would
require extensive resources to do such testing in large scale,
therefore it was out of scope for our work.

We use the same set of projects in two aspect of our eval-
uation. We confirm the significance of the object creation
problem and we analyze the effectiveness of our approach
on the same 7 large C++ projects. Our approach may only
be effective for projects where the object creation problem
is an issue. We assume that our results generalize for other
large projects that use an object-oriented programming
language with a rather strict type system. However, our
approach may not be interesting for small projects or
dynamically typed languages.

4) Internal Validity: The search phase may find creators
that are technically feasible, but practically not. Also, we
may iterate uninteresting creators for the graph traversal.
Thus, we may investigate cases that would be discharged
directly by developers. This may produce more work for
𝐴𝐿𝐺𝑜 but does not affect our conclusions.

5) External Validity: We assume that our approach can
be generalized to other object-oriented programming lan-
guages with type information. However, in small projects,
object creation may not be noticed as a problem. The user
study results for time efforts may be specific to the rather
strict C++ type system. The ranking of criteria provides
guidance for other programming languages, too.

VII. Related Work
Several other work on testing object-oriented programs

either focus on the broader problem to generate a desirable
object state [4, 11, 6, 30, 8, 9, 7, 5] or do not consider the
object creation and, for example, capture objects during
runtime [7]. Our work focuses on the specific part of object
creation and does not aim to generate a desirable state.



Figure 6: Comparisons 𝐴𝐿𝐺𝑜 (left) versus 𝐴𝐿𝐺𝑓𝑤 (right) for functions. The histograms show how often each solution size occurred.
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Figure 7: Presentation similar to Fig. 6. However, all cases where both solutions have equal sizes are ignored.
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The work of Thummalapenta et al. [5] is closely related
to our work. They also identify the problem of object
creation as challenging and propose to use a keyword-based
code search in method bodies within an intra-procedural
analysis. However, they state that such analysis ‘is less
precise than inter-procedural analysis’ and only used due
to scalability reasons. Due to the keyword-based search,
their approach does not require or use type information.
The type detection by an inter-procedural analysis of our
approach provides accurate results and is still fast.

Compared to API mining approaches [31], our approach
can find more object creators and new solutions.

Several related work provide approaches for test gener-
ation in object-oriented programming languages [7, 32, 4,
11, 6]. Such approaches require a mechanism for object
creation. They either (a) search for a constructor or
generate the object with a general mechanism provided
by the programming language [7, 32] or (b) recursively
traverse the required dependencies for object creation
until they find the first working solution [11, 6]. However,
considering only the first working solution is undesirable in
real-world projects according to the results of our survey.
Cseppentő and Micskei provide further evaluation of test
generation tools and their support regarding objects [33].

Previous work, where the evaluation targets compar-
atively small projects, recognize the challenges for the
creation of complex objects [10, 11, 34].

The tools KLOVER [35, 36] and FSX [37, 38] auto-
matically generate unit tests for large C++ projects. The
examples shown for FSX contain a default constructor call,
hence object creation seems to be supported. However, the
approach remains unclear. Garg et al. target unit test gen-
eration in C++ with directed random test generation [39].

We are not aware of other studies on developers’ pref-
erences for the optimization version of the object creation
problem. We are unaware of existing tools for C++ or Java
that respect such developer preferences.

VIII. Conclusions

The task of object creation in large C++ projects can be
a time-consuming challenge for developers. Our approach
automatically finds options for the object creation in
more than 94 % of all cases and solutions to create all
required objects for 94 % to 99 % of all functions. Therefore,
our approach can provide significant time reductions for
developers. In addition, our approach finds solutions that
better align with preferences of developers compared to
manual solutions. Thus, using our approach can improve
code quality. Finally, solutions found by our approach
better align with preferences of developers compared to
solutions found by a random approach used in related work.

In practice, developers could consider additional require-
ments for creating objects. Or even more, they might add
new constructors to solve the problem. However, even in
such cases, our approach can provide a list of alternative
options and additional insights for missing options.

Our work addresses only object creation and does not
focus on creating a desired state of an object. However,
according to our survey results, developers state that
the task of object state preparation requires less effort
compared to the creation in the context of large projects.
In addition, it may happen in the context of testing that
an object instance is only required because a parameter
demands it but the actual behavior may not be of interest.

While our work focuses on large C++ projects, we ex-
pect that the results generalize to other object-oriented
programming languages with type information. We also
expect that the results of our work allow other researchers
to propose techniques with higher practical acceptance.

Future work on the connection between the creation of
objects and their set-up into a desired state may provide
additional benefits for automated tools and the manual
work of practitioners. In addition, the accurate detection
of output-parameters as described in Section IV-B might
be an important task for C++ and C projects.
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