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ABSTRACT
Code recommendation systems for software engineering are de-

signed to accelerate the development of large software projects.

A classical example is code completion or next token prediction

offered by modern integrated development environments. A partic-

ular challenging case for such systems are dynamic languages like

Python due to limited type information at editing time. Recently,

researchers proposed machine learning approaches to address this

challenge. In particular, the Probabilistic Higher Order Grammar

technique (Bielik et al., ICML 2016) uses a grammar-based approach

with a classical machine learning schema to exploit local context.

A method by Li et al., (IJCAI 2018) uses deep learning methods, in

detail a Recurrent Neural Network coupled with a Pointer Network.

We compare these two approaches quantitatively on a large corpus

of Python files from GitHub. We also propose a combination of

both approaches, where a neural network decides which schema to

use for each prediction. The proposed method achieves a slightly

better accuracy than either of the systems alone. This demonstrates

the potential of ensemble-like methods for code completion and

recommendation tasks in dynamically typed languages.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
• Software and its engineering → Development frameworks
and environments.
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1 INTRODUCTION
Code recommendation systems for software engineering (RSSEs)

are designed to accelerate the development of large software projects

[17]. A widely used feature of integrated development environ-

ments (IDEs) is code completion or next token prediction [1], which

is a type of RSSE. Large software projects require developers to

work with massive libraries. Therefore, an use-case for next token

prediction and automatic code completion could be finding the

right function among thousands. An automated next token predic-

tor assists the developer by proposing interesting or probable next

tokens, which helps the developer to explore the set of possible

functions that can be used at a given position within the program.

In this sense, code completion can aid developers in navigating

code and learning new libraries by providing information about

available functions, methods or attributes.

Simulating what a user might want to write next in a text editor

becomes a typical problem of code completion and code recom-

mendation. However, this task has an intrinsic limitation, since by

simulating human behavior we have to make a list of simplifying

assumptions. Therefore, we can only approximate the next action

a programmer might want to take. The number of possible inputs

is nearly endless, making it hard to accurately predict code. For

instance, a string can represent almost any word used in common

language. Furthermore, a machine needs to guess what type of

object a user wants to define next. Recently proposed models for

code completion tend to struggle with predicting what the value of

an object will be, rather than what kind of object will be used next

[12] [16] [11] [4]. Here, the syntax of a programming language can

help to provide more accurate predictions by limiting the search

space in which a valid prediction can be found. Machine learning

models can learn this syntax, which helps with predicting next

tokens. However, most approaches for intelligent code completion

rely on type information, which is only available at compile time

[12]. Consequently, it is harder to provide code completion in dy-

namically typed languages like JavaScript or Python due to the lack

of type information when code is written. Since dynamically typed

languages are rising in popularity, the demand of intelligent code

completion for these languages becomes more urgent. In this paper

we introduce a generative model which can be used as a back-end

for intelligent code completion or recommendation systems.

Besides, the availability of large code repositories (so-called "Big

Code" [1]) such as GitHub, has lead to a rise of deep learning and

probabilistic language models for code [1]. Recurrent Neural Net-

works (RNNs) have been prominent in predicting next tokens in

code but face some limitations. Depending on the number of words

https://doi.org/10.1145/3387940.3391489
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in the global vocabulary, the required computational effort to eval-

uate the softmax function, which is used in RNNs, can get very

high. A standard way of dealing with this problem is to restrict the

vocabulary. However, this approach leads to another problem: out

of vocabulary words (OoV words), as defined in [11], which can

not be predicted by a RNN. The recently proposed Pointer-Mixture

Network [11] alleviates this problem by utilizing Pointer Networks

[19] to predict OoV words. Although the Pointer-Mixture Network

can establish OoV word prediction, OoV words which fall outside

of the current context can not be predicted by the model.

Another notable approach for code recommendation problem is

Probabilistic Higher Order Grammar (PHOG) which was proposed

by Bielik et al. in [4]. PHOG utilizes production rules from a context

sensitive grammar and has little restrictions in regard to vocabulary

size and long-range dependencies.

In this paper, we propose an Extended Network, a model for pre-

diction of terminal values of AST nodes based on a combination

of the Pointer-Mixture Network and PHOG. Besides learning to

predict next tokens by exploiting each of these underlying compo-

nents, Extended Network also learns when to use PHOG instead

of the Pointer-Mixture Network. Furthermore, our Extended Net-

work uses an improved underlying RNN architecture that utilizes

multiple long short-term memory (LSTM) layers and dropout. We

implemented the Extended Network and evaluated its accuracy

with different settings of relevant parameters. We have also com-

pared the performance of each (sub-)component in order to under-

stand the strengths of each method. Overall, our implementation

was able to (moderately) surpass the performance of a Pointer-

Mixture Network and a PHOG. Based on these results we believe

that ensemble-like models can further improve accuracy of code

recommender systems.

This paper is organized as follows. Section 2 describes the ap-

proach. The following Section 3 shows the evaluation. We outline

related work in Section 4 und conclude in Section 5.

2 APPROACH
The idea behind Extended Network is to combine neural and prob-

abilistic language models for code modeling and prediction. Ex-

tended Network is a way to build an ensemble of deep-learning

and probabilistic models, which intelligently chooses between its

components. Hereby, it compensates for the weaknesses of the in-

dividual models it consists of. The general methodology behind

Extended Network relies on two requirements: (1) a neural network

is needed to base the Extended Network upon, and (2) a set of well

defined criteria on when to use which model. If the requirements (1)

and (2) are met we can build an Extended Network. This is achieved

by adding an output-dimension to the output layer of the neural

network for each probabilistic language model which we want to

utilize in the Extended Network. Therefore, each of these added

output-dimensions holds an estimated probability of how likely it is

that its corresponding language model produces a good prediction

for the current input. The remaining outputs are words from the

vocabulary.

To formally define Extended Network consider𝑦 to be the output

layer of a given neural network:

𝑦 = 𝑓 (𝑊𝑥 + 𝑏) (1)

Compute prob distribution y’

Neural Network com-

ponent receives input

Is argmax(y’)

special ID?

Use argmax from prob-

ability distribution y’

Use prediction from

statistical model

no

yes

Figure 1: Flowchart describing how Extended Network for-
mulates a prediction.

with 𝑓 being an arbitrary activation function and𝑊 ∈ R𝑛×𝑚
and𝑏 ∈

R𝑛
being trainable parameters. The output of the neural network

𝑦 ∈ R𝑛
is a probability distribution over 𝑛 possible outputs. Now

let 𝑔𝑖 with 𝑖 in {1, .., 𝑘} be 𝑘 probabilistic language models. We

build the Extended Network by integrating these models into the

neural network by extending the output dimension of the neural

network so that 𝑦
′
∈ R𝑛+𝑘

. This can be achieved by changing

the dimensions of𝑊 and 𝑏. The resulting output of the Extended

Network is computed as follows:

𝑦
′
= 𝑓 (𝑊

′
𝑥 + 𝑏

′
) (2)

with𝑊
′
∈ R(𝑛+𝑘)×𝑚 and 𝑏

′
∈ R𝑛+𝑘

are the trainable parameters

and 𝑓 is the same activation function as before. Besides giving an

estimated probability distribution over a predefined vocabulary,

the Extended Network also returns an estimated probability for

each model on how likely it is that the model 𝑔𝑖 , with 𝑖 in {1, ..., 𝑘},

produces a correct prediction. From now on we will refer to the out-

puts 𝑦
′
𝑛+1, ...,𝑦′𝑛+𝑘 as special IDs which results in each probabilistic

language model having its own special ID.

To illustrate how an Extended Network chooses between models,

consider an Extended Network which consists of a neural network

and a single probabilistic language model. The output of the Ex-

tended Network can be a word from the vocabulary or the special

ID of the probabilistic model. To formulate a prediction using the

Extended Network we either utilize the output of the neural net-

work component or the prediction from the probabilistic language

model. Figure 1 shows how the Extended Network chooses a model

for formulating the next prediction.

Conditioning Extended Network on when to use the neural net-

work component and when to use which of the other components is

done through creating custom labels. A label is either a word from

the vocabulary or any of the special IDs. An important criterion

for creating labels is that they have to be deterministic. Other-

wise, the network would have difficulties in learning to predict the

correct special IDs or words from the vocabulary. Therefore, we

create a hierarchy in which we successively test a set of conditions

𝐶 = {𝑐0, ..., 𝑐𝑘} where condition 𝑐0 belongs to the neural network

component and 𝑐𝑖 belongs to probabilistic language models 𝑔𝑖 for
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𝑖 in {1, ..., 𝑘}. As soon as a condition is met, the label is set to the

belonging special ID or word. With this kind of hierarchy, we can

create deterministic labels and simultaneously prioritize the models

according to the order in which we run through the conditions 𝐶 .

The set of conditions 𝐶 and the order of running through the set

has a big impact on the Extended Network’s behavior. There is no

single best way to formulate the conditions and the set of conditions

highly depends on the application of the Extended Network.

Extending Pointer-Mixture Network with PHOG The goal

of this Extended Network is to reduce the number of OoV words

with long-range dependencies that can not be predicted. Since OoV

words can not be predicted by the RNN component of the Pointer-

Mixture Network, OoV words would normally be predicted by the

pointer component of the Pointer-Mixture Network. Long-range

dependencies introduce additional difficulty for the pointer compo-

nent. The problem with long range dependencies in OoV words lies

in the fixed size of the attention window of the pointer component.

Since the prediction of the pointer component is a location within

the context window, the network and its corresponding pointer

distribution can only predict words which appear within the at-

tention window. Therefore, OoV which fall outside the attention

window can not be predicted by neither the pointer component nor

the RNN component.

In contrast, a PHOG is theoretically not limited by vocabulary

size and does not suffer from long range dependencies as much. For

PHOG the vocabulary space is only limited by the number of distinct

words in the training set. With the TCond language, which is is

a domain specific language to move over an AST and accumulate

information while traversing the tree, the TGen program of PHOG

can be trained to aggregate any context and is not limited by the

locations in which words appear in the AST.

To alleviate the problem of predicting OoV words with long-

range dependencies, we combine a PHOG and a Pointer-Mixture

Network in an Extended Network. This Extended Network will be

used to predict next node values in ASTs of Python programs. The

experimental setup is explained in Section 3.

Learning to predict PHOG The key idea behind Extended Net-

work is that every time the prediction from a probabilistic language

model should be used, a special ID is predicted by the neural net-

work component. For the purpose of this study, the underlying

neural network is the Pointer-Mixture Network and the probabilis-

tic language model used to extend it is a PHOG. Whenever the

PHOG should be used, the network predicts a special ID, which we

refer to as hog ID. In all other cases the Pointer-Mixture Network

should predict the next node with either the RNN or the pointer

component. We achieve this by adding the hog ID to the output

layer of the RNN and conditioning the Extended Network to pre-

dict it whenever the RNN and pointer component are incapable of

predicting the next node. In the following, we discuss the set of

conditions𝐶 and how to create the labels for the Extended Network.

Conditioning the Extended Network The Extended Network

is conditioned in a similar way as the Pointer-Mixture Network is.

We organize the labels for next node values in ASTs in a file which

we denote as terminal corpus. In other words, the terminal corpus

represents the labels for the network for training and development

data-set or training and test data-set. For each node in each AST

in the training and dev/test- data-set we check which component

should be used to predict it. This information is encoded with

either an ID from a dictionary that contains words appearing in

the vocabulary (terminal dictionary: TDict), location indices from

the context window or the hog ID. To further illustrate how the

terminal corpus is built consider the following algorithm:

Algorithm 1 Creating the Terminal Corpus

1: procedure Process(file, hogFile, TDict, attn_size)
2: 𝑇𝐶𝑜𝑟𝑝𝑢𝑠 ← (︀ ⌋︀

3: for AST, hogPred in file, hog_File do
4: 𝑇𝐿𝑖𝑛𝑒 ← (︀ ⌋︀

5: 𝐴𝑡𝑡𝑛𝑄𝑢𝑒 ← 𝑑𝑒𝑞𝑢𝑒(𝑎𝑡𝑡𝑛_𝑠𝑖𝑧𝑒)

6: for Node, hogNode in AST, hogPred do
7: if "value" in Node.keys then
8: 𝑑𝑖𝑐_𝑣𝑎𝑙𝑢𝑒 ← 𝑁𝑜𝑑𝑒(︀”𝑣𝑎𝑙𝑢𝑒”⌋︀

9: if dic_value in TDict then
10: TLine.append(TDict[dic_value])

11: AttnQue.append("Normal")

12: else
13: if dic_value in AttnQue then
14: 𝑎𝑡𝑡𝑛𝐿𝑜𝑐 ←

15: 𝑙𝑜𝑐𝐸𝑞(𝐴𝑡𝑡𝑛𝑄𝑢𝑒,𝑑𝑖𝑐_𝑣𝑎𝑙𝑢𝑒)

16: TLine.append(attnLoc)

17: else if dic_value ==
18: hogNode["value"] then
19: TLine.append(hogID)

20: else
21: TLine.append(unkID)

22: AttnQue.append(dic_value)

23: else
24: AttnQue.append("EmptY")

25: TLine.append(TDict["EmptY"])

26: 𝑇𝐶𝑜𝑟𝑝𝑢𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑇𝐿𝑖𝑛𝑒)

27: return TCorpus

Figure 2: Algorithm for creating the terminal corpus based
on the algorithm used to create the terminal corpus in [11].

First of all, a trained PHOG is used to create a set of predictions

for the training and testing data. The set is stored in a json file

similarly to the train and test data-set. Each line corresponds to an

AST and has its own json object. Each object contains a value and

type prediction for each node in the AST. The file hogFile stores the
predictions from a pre-trained PHOG and is constructed so that each

line in the hogFile corresponds to the AST in the training (or testing)

set with the same line number. The PROCESS procedure (Figure

2 line 1) accepts a file which stores the ASTs, the corresponding

hogFile, a dictionary with the 𝑛 most appearing words (𝑛 is the

vocabulary size) and the size of the attention window (attn_size).

Thereafter, the terminal corpus is created. For each AST we create

one line whereby each terminal node value is translated to either an

ID from the terminal vocabulary, an index denoting the location in

the context window, or the hogID. The resulting terminal corpus is
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a list of lists with each line representing one AST’s terminal values.

Hereby, each value is encoded via an integer-ID.

The encoding follows a hierarchy where we condition the net-

work on when to use which component. If possible, the ID stored

in the terminal dictionary is appended to the current line in the

terminal corpus. This is equivalent to telling the network to use

the RNN component for prediction. If the word can not be found in

the terminal dictionary and is present in the attention window, the

location in the current context window is appended to the current

line in the terminal corpus. If the latter does not work, the predic-

tion of the PHOG can be used. If its prediction is correct, the hogID

is appended to the current line in the terminal corpus. If not, all of

the components have failed to produce a correct prediction and the

unkID is appended to the current line in the terminal corpus. Figure

3 shows this procedure for the example terminal𝑇 with value “foo”.

Since for non-terminals there is no “value” component, we encode

the absence of a value as “EmptY”.

In practice, the Extended Network is conditioned to always give a

prediction by denying the unkID as a prediction. For this, all unkID

predictions are counted as wrong predictions. In consequence, the

network will avoid predicting unkID. It would have been possible

to utilize the PHOG prediction whenever we would have predicted

the unkID keyword before – disregarding whether the prediction is

correct or not. This would probably have conditioned the Extended

Network to predict the hogIDmore often than practical. In short, we

condition the network to utilize the PHOG prediction whenever it is

correct, instead of whenever it is unsure what to predict. Although

the RNN component is not able to give the correct prediction in

these cases, it can produce a prediction that is close to the correct

prediction in the embedding space. Whenever the PHOG fails to

produce a correct prediction, the output of the RNN is preferred,

because there is no similarity metric for PHOG predictions. This

makes it hard to evaluate if the wrong prediction of the PHOG is

close to the actual label or not.

3 EVALUATION
3.1 Experimental Setup
The data-set used for all training and evaluation tasks is the 150k

Python data-set from Eth-Zürich
1
. The data-set contains 150,000

Python programs which were collected from GitHub repositories.

Duplicates such as forks were removed and only repositories with

common license agreements like the MIT, Apache or BSD-license

were used. The programs were parsed into AST format using the

Python parser included in Python 2.7. The Python 150k data-set

has proven its quality and has been widely used in the field of code

completion [4] [11] [12] [16]. Originally, the data-set was split into

100,000 ASTs for training and 50,000 ASTs for testing.

For parameter tuning and developing the models, we split the

training data using a training-development split. From the original

100,000 training ASTs we used 90,000 ASTs for the training and

10,000 ASTs for the development data-set, leaving the evaluation

set untouched. By using a dedicated training-development split

for parameter tuning, we keep validity of our testing data-set and

make our model comparable to other models, which were also

1

https://www.sri.inf.ethz.ch/py150

T={"type":"Str","Value":"foo"}

Is "foo"

in TDict?

Write TDict["foo"] in TCorpus

Search word in at-

tention window

Is "foo" in

attn window?

Write location ID in TCorpus

Is PHOG

prediction

"foo"?

Write UNK ID in TCorpus

Write hog ID in TCorpus

no

yes

yes

no

no

yes

Figure 3: Process of generating a label from a terminal and
writing it to the terminal corpus.

trained using the 150k Python data-set. Furthermore, this setup

allows us to measure accuracy on unseen data which is helpful

to detect overfitting. No parameters were tuned using the testing

data-set. Only the final evaluation of our model is done on the

testing data-set.

Data pre-processing. For sequence to sequence models, e.g.

the Pointer-Mixture Network or Extended Network, the input se-

quence (flattened AST) is shifted for one time step to form labels. At

time step 𝑡 an input-sequence𝑤0 ...𝑤𝑡 has the target/label sequence

𝑤1 ...𝑤𝑡+1. As described in section 2, for the Extended Network we

need to generate a terminal corpus (modified labels) to condition

the networks on using the right component for a given prediction

task. We built terminal corpora for the train-dev split and train-test

split for vocabulary sizes of 1,000 and 10,000 words.

Experiment configuration. The basis of all our experiments

is an Extended Network consisting of a Pointer-Mixture Network

and a PHOG. For all our experiments, we used a pre-trained PHOG,

trained on the training data (either from the train-dev or train-

test split). As a base-line for our Extended Network we used the

hyper-parameters presented in [11]. Accordingly, the LSTM of the

underlying Pointer-Mixture Network of our Extended Network has

an unrolling length of 50, an attention window of size 50 and a hid-

den unit size of 1,500. For training the Extended Network, we used

the cross entropy loss function with stochastic gradient descent
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and Adam optimizer [10] for optimization. Here, the gradient is

clipped to 5 to prevent gradients from exploding [11]. We trained

the models for a maximum of 8 epochs with an initial learning rate

of 0.001 and a decay of 0.6 after each epoch.

Thereafter we carried out three sets of experiments: 1) we trained

a single layer Extended Network with varying amounts of dropout,

2) we increased the number of layers to two layers and again tuned

the amount of dropout, and 3) we used the train-test split and

trained the most promising model from 1) and 2) on 1k and 10k

vocabulary sizes. Performance metrics were the same among all

experiments. We measured accuracy on the train- and dev-set and

observed the difference between both sets.

3.2 Experimental Results
For our first experiment we did not introduce dropout or multi-

layers in order to isolate the effect the Extended Network has on

the accuracy. This is important to establish a fair comparison to the

Pointer-Mixture Network. Multi-layers and dropout are likely to

be effective on the Pointer-Mixture network as well. Therefore, the

performance gains from implementing an Extended Network would

be less obvious. We were able to reproduce the results presented

in [11] after training the Pointer-Mixture Network for 7 epochs

on the train-test data-set. After 7 epochs of training we could see

an improvement of 0.6% in accuracy on the test-set and 1.9% on

the train-set. Table 1 shows the results of the Extended Network

on next node value predictions and compares the accuracy to the

accuracy of an equivalent Pointer-Mixture Network and a PHOG.

accuracy on test data-set

PHOG 63.8%

Pointer-Mixture Network 66.4%

Extended Network 67.0%
Table 1: Results after training a single layer Extended Net-
work without dropout for 7 epochs on train-test split.

After carrying out our first experiment we noticed a variance in

accuracy between the training- and testing data-set. To mitigate the

variance and boost testing accuracy, we used a version of dropout,

as presented in [6], which is suitable for LSTM networks. The goal

was to regularize the Extended Network, to improve its ability to

generalize and thus boost the accuracy on the test data-set. To find

the optimal amount of dropout, we used the train-dev split and the

configurations displayed in Table 2. Additionally, we increased the

depth of the network by adding a second layer to the LSTM. We

could measure a decreased delta between training- and developing

accuracy (from 2.3% to 1.5%) when adding 20% dropout and a second

layer to the network. Furthermore, the training accuracy did not

change for these setups, suggesting that we did not overfit more by

adding a second layer to the network.

Our final results were obtained using a 2 layer Extended Network

with 20 % dropout trained and evaluated on the original train-test

split of the 150k Python data-set. Table 3 shows the results for the

Extended Network on a vocabulary size of 10,000 and 50,000 words

(the evaluation test) and compares it to competing probabilistic

language models [16][4] as well as the Pointer-Mixture network

Dropout Percentage dev acc train acc

Single Layer 0 % 66.6 % 69.9%

20 % 66.7 % 68.5%

40 % 66.3 % 67.6%

Two Layers 15 % 66.7 % 68.1%

20 % 67.0 % 68.5%

30 % 66.5 % 67.6%

Table 2: Accuracies for single layer Extended Networks
and two layer Extended Networks for varying amounts of
dropout.

[11]. The Extended Network was trained on a Nvidia Tesla V100

GPU and took approximately 1.5 hours per epoch on a 1k vocabulary

and 8 hours per epoch on a 10k vocabulary.

Accuracy for value prediction

PHOG 63.8%

Decision Trees 69.2%

1k vocab 10k vocab

Pointer-Mixture Network 66.4% 68.9%

Extended Network (ours) 67.5% 69.3%
Table 3: Accuracy of value predictions for ExtendedNetwork
compared to state-of-the art probabilistic models and the
original Pointer-Mixture network.

3.3 Detailed Method Comparison
We have performed an additional analysis in order to compare in

detail the performance of each of the components of the Extended

Network. We use the same model configuration as in Section 3.2

with a vocabulary size of 10,000, and perform experiments on an

evaluation dataset with 50,000 Python source files. We focus here

on the value prediction only (i.e. prediction of the terminal values

in AST nodes).

Table 4 shows the results. Column “RNN” describes the pure

LSTM-model, “Attn” the pure attention mechanism, and “PHOG”

the approach from [4]. The rows “Able to predict” show the percent-

age of cases where a component was in principle able to predict.

For example, if the target token is not in the terminal dictionary

TDict, the RNN is not able to predict at all. Note that PHOG does

not have such constraints and is always able to predict.

The rows “Used as predictor” indicate how many times a partic-

ular prediction component was really used. Essentially, it shows

the distribution of the model component selection mechanism il-

lustrated in Figure 1. Overall, the most used component is the RNN.

Other components are used by the selection mechanism roughly ac-

cording to their accuracy. The preference for RNN can be attributed

to the fact that this model has seeming specialized on predicting

the “EmptY” token (as noted below, it appears frequently in the

dataset).

The rows “Used and correct” show the percentage of correct

predictions (among all predictions) of a component if it was selected.
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Overall, RNN contributes most correct prediction results, while the

impact of the pure attention mechanism and of the PHOG are

marginal.

The rows “Correct own predictions” indicate the precision of

each component by itself. The numbers show the percentage of

correct predictions of a component among all own predictions. It

shows that RNN is correct for almost 60% of own predictions (but

see discussion in Section 3.4 on predicting the “EmptY” token why

this figure is rather misleading). The least precise component is

PHOG with roughly 5% correct predictions.

RNN Attn PHOG

Able to predict 84.2% 5.4% 100%

Used as a predictor 91.5% 1.1% 7.4%

Used and correct 54.1% 0.2% 0.4%

Correct own predictions 59.1% 20.2% 5.4%

Table 4: Accuracy of the tree components of the Extended
Network including predictions of nodes without value, i.e.
"EmptY" (for a dictionary size of 10,000 on an evaluation
dataset with 50,000 ASTs).

3.4 AST Nodes without Values
A large part for AST nodes in our dataset (or in general, in a repre-

sentative Python source code) are lacking a value. Such AST nodes

are typically non-terminal nodes or terminal nodes manifesting

in sources code with a fixed keyword (e.g. "as"). Following [11],

we consider all nodes with this property as a special value in the

dictionary TDict, i.e. as a special case of a node value (denoted as

“EmptY” in Section 2, or EMPTY in [11, Fig. 4]).

The component RNN is solely responsible for predicting such

“EmptY” nodes. Essentially, a value prediction of type “EmptY”

means that we should subsequently invoke a (separate) prediction

model for predicting the type of this AST node, and - if applicable -

suggest as a completion node’s unique representation in the source

code (see [11]).

Training and evaluating models with this special value “EmptY”

creates some problems. First, a large share of AST nodes (in our

case, 47.6% out of 29,903,343 prediction instances) are such “EmptY”

nodes. This might bias the RNN model to focus on this particular

special value during training. Furthermore, predicting this special

value might be easier than others, since the context of AST nodes

without value might give hints not present for other node values.

E.g., it is quite likely to encounter keyword "as" shortly after key-

word "with".

In general, including the predictions of this special value in the

evaluation significantly boosts the accuracy values, which we also

observed in our experiments. In our main evaluation, we follow a

schema used in the previous works [4, 11] and include predictions of

the “EmptY” nodes in order to provide comparable results. However,

we do not consider such a evaluation a realistic one since it might

not correspond to a perceived user experience. In fact, other state-

of-the-art works [2, 5] report much lower accuracy values for code

completion (e.g. accuracy@5 of 24.83% for Java [2]).

Consequently, we supply complementary results of an evalu-

ation with all AST nodes with the special value “EmptY” being

ignored. Note that such nodes are still used in the training, and so

the presented results might be worse than in a setting where they

are not considered at all.

Table 5 shows the results (the meaning of entries is analogous

to those in Section 3.3). The accuracy of the RNN component drops

significantly (from 54.1% to 18.8%). This confirms that the much

better accuracy of this component reported in Table 4 can be attrib-

uted to (correct) predictions of the “EmptY” values. As expected,

the individual performances (fraction of correct own predictions) of

the PHOG model and the attention mechanism remain nearly the

same. With 84.3% of invocations the RNN model is still preferably

used, which could be attributed to the training with the “EmptY”

values. Due to this fact it still dominates the overall performance

of the Extended Network, which drops from 54.7% (in Section 3.3))

to now only 20.0%.

RNN Attn PHOG

Able to predict 70.0% 10.3% 100%

Used as a predictor 84.3% 2.0% 13.7%

Used and correct 18.8% 0.4% 0.7%

% of own correct 22.3% 20.7% 5.6%

Table 5: Accuracy of the tree components of the Extended
Networkwith ignoringASTnodeswith value "EmptY". Over-
all model accuracy drops to 20.0%.

4 RELATEDWORK
Natural Language Processing (NLP) can be defined as an intersec-

tion of artificial intelligence and linguistics [15]. The hypothesis

that code recommendation can be framed as a natural language

problem is the basis for machine learning models which originate

from NLP.

The natural hypothesis As presented in [1], states that soft-

ware is a form of human interaction and software corpora can

be used similarly to natural language corpora. This analogy of

code to natural language has been studied as well as the repeti-

tiveness and predictability of code have been shown. For instance,

n-grams [8][18] have been used to demonstrate the naturalness and

repetitiveness of code; many machine-learning and deep-learning

models that originate from NLP have proven they work well for

code [12][16] [11][14].

Machine Learning Models for Code Completion To apply

machine learning to intelligent code completion we treat code as

natural language and represent program code with abstract syntax

trees (ASTs). The code completion task is defined accordingly as:

given an AST, predict the next node in the tree. Some typical tech-

niques of neural networks used to solve this problem are Recurrent

Neural Networks (RNNs), Long Short-Term Memory (LSTM) and

Word embedding [14][9][13]. Besides, the performance of a neural

network drastically improves with the amount of data that can be

utilized for training and testing the network. In 2017 Liu et al [12]

proposed a LSTM that learns code completions from a large corpus

of dynamically typed JavaScript code. The LSTM they introduced
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competes with state-of-the-art probabilistic models for code, e.g.

decision trees [16]. However, these standard neural models suffer

from long-range dependencies and out-of-vocabulary (OoV) words

[11].

Neural Attention and Pointer Networks Recently, further

networks have been proposed for code completion which are based

on a LSTM architecture and neural attention/pointer networks [11].

The Pointer-Mixture Network introduced by Li et. al in 2018 [11]

combines an attentional-LSTM and a Pointer Network to tackle the

problem of OoV words and long range dependencies. Since storing

the information in a single vector of fixed length in RNNs leads to a

hidden state bottleneck [11] in capturing long-range dependencies,

more than one hidden state vector is needed to propagate infor-

mation through the RNNs time steps over extended time intervals.

The attention mechanism is proposed in [3] to address this issue,

which utilizes a weighted sum of past and current hidden state

vectors. For an attentional LSTM, there are two considered types of

attention: Context Attention and Parent Attention as defined in [11].

While the first one is an attention mechanism with a fixed-sized

context window, the latter is a special form of Context Attention

used for ASTs which adds the hidden state from the parent of the

currently processed node to the attentional layer.

Inspired by the localness of software hypothesis, which states that
source code is locally repeated [18], Pointer Networks is proposed

to reduce the problem of static output vocabularies by predicting

tokens from the input sequence [19]. More precisely, the Pointer

Network predicts next tokens by pointing to a token from the input

sequence.

Last but not least,ProbabilisticHigherOrderGrammar (PHOG)
was first introduced in [4] by Bielik et. al. Prior to their model, prob-

abilistic context free grammars (PCFG) [7] and n-gram models [18]

have been used as generative models for code. PHOG generalizes

upon PCFG, by not only conditioning on the parent non-terminal

node, but also dynamically accumulating a context through navigat-

ing over the AST. In contrast to n-gram models and PCFG, PHOG

dynamically generates a program representation through the gen-

erated context. PCFGs and n-gram models, on the other hand, are

often engineered to fit a domain specific problem and therefore do

not perform well in other domains. By the flexible program repre-

sentation, PHOG becomes widely applicable and can be applied to

any programming language that features a representation through

ASTs.

5 CONCLUSION
This paper demonstrates the potential of the Extended Network as

an ensemble method for predicting next tokens for code completion

in dynamically typed languages.

The Extended Network based on a Pointer-Mixture Network

and a PHOG showed improvements in accuracy over each of the

stand-alone models. Iterating on the RNN architecture illustrated

the importance of a well performing RNN for an Extended Network.

We understand as Extended Network an ensemble-like archi-

tecture designed to fit arbitrary models and able to include future

approaches as components of the ensemble model. Possible exten-

sions could be n-gram models, variations of n-gram models, e.g.

cached n-gram models and nested n-gram models, as well as deci-

sion trees. In our opinion, the most promising approaches for future

research are: creating bigger ensembles, finding the best hierarchy

of models, and tuning the underlying RNN architectures.
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