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Abstract

Code completion has become an indispensable feature of
modern Integrated Development Environments. In recent
years, many ML-based approaches have been proposed to
tackle this task, with deep learning models achieving the
best results. However, almost all of these works report the
accuracy of the code completion models as aggregated met-
rics averaged over all types of code tokens. Such evaluations
make it difficult to assess the potential improvement for par-
ticularly relevant types of tokens (such as method or variable
names), and blur the differences between the performance of
the methods. In this paper, we propose a methodology called
Code Token Type Taxonomy (CT3) to address this problem.
We identify multiple dimensions relevant for code predic-
tion (e.g. syntax type, context, length), partition the tokens
into meaningful types along each dimension, and compute
individual accuracies by type. We illustrate the utility of this
methodology by comparing the code completion accuracy
of a Transformer-based model in two variants: with closed,
and with open vocabulary. The results show that the refined
evaluation provides a more detailed view of the differences,
and indicates where further work is needed. Furthermore,
the open vocabulary model is significantly more accurate
for relevant code token types such as variables and literals.

CCS Concepts: - Computing methodologies ~ Machine
learning approaches; - Software and its engineering —
Development frameworks and environments.

Keywords: code completion, accuracy evaluation, code to-
ken types, open/closed vocabulary, Transformers, Python
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1 Introduction

Code completion is a widely used feature of modern IDEs,
where the most likely next token is offered based on the code
already present up to the cursor position [7]. This feature
not only helps developers to save typing effort, but also as-
sists them in learning new libraries, as it offers information
about available functions or attributes. Machine-learning
(ML) approaches for code completion are leading the field,
and in particular the Transformer models excel here by out-
performing the Recurrent Neural Networks (RNNs). Multi-
ple state-of-the-art solutions are using Transformers with
variations of the code representation and/or the attention
mechanisms [3, 7, 10].

However, most of the proposed modifications for Trans-
formers use aggregated metrics (i.e. averaged over all types
of code tokens) to evaluate their accuracy. This eliminates
valuable information about the improvements for relevant
code token types, and as a consequence make it more dif-
ficult to compare approaches or identify weaknesses of a
method. For instance, code completion for identifiers is con-
sidered highly relevant for developers [4], yet aggregated
metrics cannot compare the accuracy of two approaches in
this regard. To our knowledge, only few previous works [7]
consider token categories and evaluate the mean reciprocal
rank (MRR) per category. However, the token subdivision
(into attribute access, numeric constant, variable/module
name, and parameter name) is rather crude, and it is difficult
to apply this taxonomy to other works. We aim to provide
a more refined types of code tokens which can be used for
evaluating existing and future code completion approaches
with minimum effort. Our contributions are as follows:

m We propose a methodology called Code Token Type Tax-
onomy (CT3) for a refined evaluation of code completion
accuracy by proposing multiple dimensions for identifying
code token types. For each dimension we obtain the types
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Figure 1. Implementation and usage of Code Token Type
Taxonomy (CT3).

by analyzing the Abstract Syntax Tree (AST), and the re-
lationships between tokens in the AST. CT3 can be used
for a comprehensive comparison between approaches, to
gain a detailed view of the impact of each component in a
prediction model, and to identify model challenges.

m We demonstrate the utility of this methodology by con-
ducting an empirical study on the Python150k’ dataset
of a Transformer-based code completion approach. We
compare the impact of using closed vocabulary vs. open
vocabulary [6], and find significantly better accuracy of
the latter for relevant token types.

m To facilitate reproducibility and reuse of our methodology,
we published the Python150k dataset with pre-computed
token types according to CT3% and CT3 source code®.

The rest of the paper is organized as follows. Section 2
describes the approach, while Section 3 discusses the experi-
mental evaluation. We outline related work in Section 4, and
conclude in Section 5.

2 Approach
2.1 Methodology for a refined evaluation

Figure 1 illustrates the implementation and usage of the
proposed methodology. Given a programming language, we
identify the code token properties relevant for effective code
completions. This gives rise to multiple dimensions (i.e. cri-
teria for partitioning), and the token types within each di-
mension (i.e. a complete subdivision of all tokens into types).
Table 1 shows such a schema for Python. In the next step, a
static code analyzer must be implemented. Given a dataset, it
assigns each code token a type for each dimension. Our pro-
totypical implementation for Python analyses the Abstract
Syntax Tree (AST) and the relationships between its nodes.
Note that we consider only terminal (leaf) nodes in the AST.

After applying the analyzer, we combine the results with
logs of code completions provided by the investigated model

https://www.sri.inf.ethz.ch/py150
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(see middle of Figure 1). The result is a log file which contains
for each code token its CT3-data and information on the
correctness of the completion. In the final step, the log is
partitioned according to the types per dimension, and the
desired evaluation metric (e.g. MRR, accuracy) is computed
for each type (per dimension).

In the following we discuss the CT3 schema used for
Python, see Table 1. Details of meaning and identifying types
in each dimension are presented in Appendix A.1.

Table 1. CT3 schema proposed for Python

Syntax Type Context Origin Length  Frequency
attribute in_arithmetic_op from_builtin long high_frequent
base_class in_assign from_extlib medium low_frequent
class in_bool_op from_infile  short medium_frequent
class_def in_class_def from_stdlib

const in_comparison

exception in_else

func in_except

func_def in_for

func_keyword in_func_def

import_ID in_if

literal in_parameter

method_call in_raise

method_def in_return

module in_try

pre_attribute in_while

python_keyword in_with
sub_import

var

unknown

Syntax Type refers to the syntactic category of a token
in source code. Values of syntax type (first column of Ta-
ble 1) can mostly be generalized for various programming
languages and offer information regarding the code token’s
purpose. Most of types describe identifiers since predicting
them is the most relevant completion in practice [4]. For
instance func indicates a function call, while func_def de-
notes a function definition; analogously for method_call and
method_def. A class instantiation is expressed by class value.
The var represents usage of any kind of variable in general,
e.g. parameters in function calls, free variables, or global
variables. Syntax Type dimension also contains keyword, lit-
eral and constant. The unknown value is used for any syntax
type other than the first 18.

Context describes surrounding code structures (e.g. loop
body, condition expression) in which the token is found. The
context types (second column of Table 1) aim to reflect the
local context, which plays a large role in code completions
[4]. For each code token, we record in how many contexts
of a given type it is included. Listing 1 illustrates the to-
ken var_example which is in the context of in_class_def,
in_func_def, in_for (twice) and in_assign.
class ClassDef ():

def func_def(self, ...):
for i in
for j in

var_example = ...

Listing 1. Context Example
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Origin indicates the location where an identifier or a key-
word is defined. The from_builtin value represents built-in
code tokens which do not require an explicit import such
as keywords (e.g. True and False). Tokens categorized as
from_extlib originate from an external (non-standard) li-
brary or a package. Identifiers defined in the same file have
from_infile as their origin value. Ultimately, from_stdlibrefers
to identifiers defined in standard libraries.

Length of a code token is the number of characters in
the token. This dimension is motivated by the fact that long
code tokens are benefit more from code completions [4]. The
length also correlates with the importance of a code token.
Short tokens usually hold temporary values (e.g. ”i” as a loop
counter), which are less significant. A code token is labeled
as short if it has up to 3 characters, label medium is used for
4 to 10 characters, and label long indicates longer tokens.

Frequency refers to code token’s frequency relative to
the frequency distribution of all code tokens within an AST.
We use three values here: low, medium, and high, based on
intervals explained in Appendix A.1. Long and frequent code
tokens are likely to be significant. On the other hand, while
short code tokens can be frequent, in general they carry
in-significant (e.g. temporary) values.

2.2 Open vocabulary for Transformers

To evaluate whether CT3 is beneficial for improving code
completion models, we implemented a Transformer-based
code completion approach in two variants: with a closed
vocabulary model (i.e. Transformer learns on a fixed set of
strings), and with an open vocabulary model using Byte-Pair
Encoding (BPE) [6]. In the latter version, each token can be
encoded by several sub tokens (potentially even letters). The
motivation for focusing on the open vocabulary model is
the notorious out of vocabulary (OOV) issue encountered in
source code, caused mainly by the arbitrariness of identifiers.
We use HuggingFace Tokenizers* as the implementation.

The original code token sequence (i.e. with closed vocabu-
lary) is created by traversing ASTs in depth-first search order.
The sub tokens sequence can be much longer than the origi-
nal one. Due to the limited memory capacity of our GPUs,
a window is used to slide through the sub tokens sequence
to divide it into smaller pieces. Each window is defined with
window_size (i.e. number of sub tokens within a window)
and step_size of the sliding window. A padding symbol is
used to ensure all windows have the same size. After per-
forming several experiments, we selected (1,000, 500) and
(2,000, 1,000) for (window_size, step_size) of closed and open
vocabulary cases, respectively. Due to the space limits, these
experiments are not presented here.

The open vocabulary model uses greedy search for finding
the next possible sub token. We assume that a prediction is
correct in this model if all sub tokens are suggested correctly.

4https://huggingface.co/docs/tokenizers/python/latest/index.html
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3 Experimental Evaluation
3.1 Research Questions

We address two following research questions:

RQ1. Does the refined evaluation reveal useful in-
formation for comparing and characterizing code com-
pletion approaches? To answer this question, we conduct
an experiment of code completions with a Transformer-
based model. We compare two variants of the model: closed
vocabulary vs. open vocabulary, and investigate whether
the refined evaluation reveals more information about each
variant and so facilitates their comparison.

RQ2. Does the open vocabulary model improve the
prediction accuracy compared to the closed vocabu-
lary model? The utility of open vocabulary models is as-
sessed by comparing the accuracy of completions provided
by each of the both models.

3.2 Evaluation Results

Experiment setup is described in Appendix A.3.

RQ1: The refined evaluation gives a more detailed
information about the completion models. The experi-
mental results show that evaluating accuracy for individual
token types provides a better understanding on the predic-
tion approaches than using the aggregated metrics. The first
line of Table 2 compares the aggregated accuracy results of
the closed and open vocabulary models on the Python50k
dataset. Figure 2 shows the refined evaluation for dimensions
Syntax Type and Length. Additionally, in Appendix A.2 we
discuss the refined evaluation for the dimensions Origin and
Frequency (see Figure A.1 there). The analysis of dimension
Context is more complex and not presented in this paper.
The special value n/a is mostly used for code tokens that are
non-terminal nodes or their types could not be identified.

Table 2. Aggregated accuracy of closed and open vocabulary
models

ek

Cc_oov_o_true 00V_C

162,750 626,087
164,924 609,391

Dataset c¢_acc. o_acc.

PY150k 0.6687 0.7121
JS150k  0.6964 0.7485

We evaluate one tenth of the evaluation dataset.

c/o denotes closed vs. open vocabulary model, acc. is accuracy.

" Number of OOV tokens in closed vocabulary model that can be
predicted by the open vocabulary model.

" Total number of OOV tokens in closed vocabulary model.

While the aggregated metric indicates that the open vo-
cabulary model increases the prediction accuracy by only
6.49%, the refined evaluation clearly reveals that the open
vocabulary model outperforms the closed model in every
dimension of CT3, with improvements ranging from 6.2% to
2.09 times. One of the reasons that aggregate metrics shows
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Figure 2. Comparing the accuracy of the closed and open vocabulary models for dimensions Syntax Type and Length.
The bars represent accuracies and the line shows the relative fraction a token type over all tokens.

only a moderate improvement is caused by the token type
n/a (mostly internal AST nodes), which makes up more than
a half of test instances, but does not benefit much from the
open vocabulary model.

Figure 2(a) shows that for the dimension Syntax Type the
open vocabulary model achieves a higher accuracy for all
token types except the module type. There is substantial
difference for the class type (1.07 times). Increase of the
accuracy for token types var and literal (two most relevant
completions in practice) is 34.1% and 41.7%, respectively.
Both closed and open vocabulary models perform quite well
for tokens categorized as python_keyword.

Open vocabulary model also outperforms the closed model
in all values of dimension Length (Figure 2(b)). Although the
overall accuracy for long tokens is not high (ca. 32.1%), the
improvement of 2.09 times is still remarkable.

RQ2: Open vocabulary model outperforms the closed
vocabulary model on predicting variables and literals.
The results in Table 2 and Figure 2 show that the open vocab-
ulary model enhances the prediction accuracy of the Trans-
former model, especially in completing variables and liter-
als, and long tokens. The last two columns in Table 2 are
computed to clarify the utility of open vocabulary model
in addressing the out of vocabulary (OOV) issue. Around
25.9% of OOV tokens encountered when using the closed vo-
cabulary model can be recommended correctly by the open
vocabulary model (Python dataset). An additional experi-
ment conducted on JavaScript® dataset (second line of Table
2) confirms the advantage of the open vocabulary approach.

4 Related Work

State-of-the-art approaches for code completions or gen-
eral code predictions use ML-based techniques [8]. Methods

Shttps://www.sri.inf.ethz.ch/js150

include n-gram language models [5], Probabilistic Higher
Order Grammars [2], Recurrent Neural Networks (RNNs)
[1, 9], or hybrid approaches [11]. Recent works [3, 7, 10, 12]
use Transformer models [13] which outperform RNNs.

An important aspect of the prediction approaches is code
representation. While some works use as input a sequence of
AST nodes linearized by a tree traversal [9, 11, 12], more re-
cent approaches attempt to capture the high-level structural
representation [1, 7]. Authors of [3] indicate only syntactic
information is needed to make meaningful predictions.

Another factor of code representation is to capturing the
code identifiers as a closed vocabulary or as an open vocab-
ulary, e.g. via Byte-Pair Encoding (BPE) [6]. While only few
works use the open vocabulary model, e.g. [12], the results
of this work show that this variant can significantly improve
the accuracy of relevant token types.

Almost all of the prior works use aggregated metrics to
evaluate the accuracy by averaging over all code token types
([7] provides a rough analysis, see Section 1). However, the
authors of [4] show that there are large differences of rele-
vance of completions from the point of view of developers.
We propose a more detailed way of evaluating the accuracy
of code completions which might facilitate comparison and
improvement of prediction models for the relevant cases.

5 Conclusion

We proposed a methodology called CT3 for a refined evalua-
tion and comparison of code completion approaches. Our em-
pirical study shows that CT3 is helpful in characterizing and
comparing the accuracy of approaches. As a side-effect, we
demonstrated that the open vocabulary model significantly
enhances the accuracy of Transformers on code completion
for relevant tokens like variables and literals. We also pub-
lished the CT3 information for the Python150k dataset, and
will publish the CT3 code analyzer for Python. Further work
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will include extending the method to other programming
languages and datasets, and implementation of specialized
code predictors according to the proposed CT3 schema.
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A Appendix
A.1 Details on Identifying Token Types in CT3

We provide here additional details of identifying the token
types for three more involved dimensions of the CT3 schema

for Python introduced in Section 2.1 and shown in Table 1.
The identification of the token types for the dimensions

Context and Length is straightforward and omitted here.
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Syntax Type values (i.e. first column in Table 1) are de-
rived based on the syntactic information of the source code
and the patterns in ASTs. The complexity of identifying these
token types ranges from simple to very complex. Simpler
types mostly depend on conditions of identifying AST node
types. Complex types are aggregations of conditions which
identify feature-specific AST patterns.

An example of a simple type is literal, which indicates
that the code token is a string, or the AST node type is "Str”.
The var, however, is a case of high complexity. Several AST
patterns related to various sorts of variables are inspected to
identify token type var. These are: (1) parameters in function
calls, (2) function or method definitions, (3) free variables,
(4) subscripted variables, (5) global variables, and optional
function arguments indicated by vararg” and "kwarg”.

Parameters of a function call (1) are located in children’s
leaves of an AST ”Call” node, except the first child, which
refers to the function itself. The node type of ancestors of
those leaf nodes must not be "attr”. Otherwise, this would in-
dicate a method call or class initiation. Parameters of function
or method definition (2) can easily be identified by checking
for the "NameParam” node type. Free variables (3) are found
based on the exclusion of other variable types. This exclu-
sion incorporates any nodes which are children of Call”,
“Subscript”, "bases” and "Attribute” node types to ensure that
the variable is not involved in any call, or it does not have a
subscript, it is not a base class inherited to a child class, or
is not an attribute of a class, respectively. Variables with a
subscript (4) can be classified by checking for the "Subscript”
node type. Ultimately, global variables, "vararg” and "kwarg”
variables (5) are detected by examining the ancestors of leaf
nodes for "Global”, “vararg” or kwarg” types.

Identifying the remaining syntax types is less complicated.
For instance, the pre_attribute and attribute indicate a pre-
attribute (if any) and attributes of an object (e.g. class in-
stance). A base class parameter in a class definition is labeled
as base_class. An imported library is identified by module
and its alias (if any) is classified as import_ID.

Origin labels (i.e. third column in Table 1) are obtained
by analyzing the import commands in each AST to deter-
mine the origin of the code tokens. Code tokens that ap-
pear as attributes of a particular library are then categorized
accordingly. Built-in code tokens are those within a prede-
fined python_keyword set. Tokens from within the file are
determined by exclusion. Those tokens are neither from the
standard library nor external libraries nor built-in.

Frequency of a code token is computed for each indi-
vidual AST. Three intervals specifying the frequency of oc-
currence as low, medium, and high are adjusted by the min,
mean, and max value of the frequency distribution of all
tokens within the AST. Equations (1a) to (1e) explain calcu-
lation for these intervals. An illustration of this process is
presented in Figure A.2.
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Figure A.1. Comparing the accuracy of the closed and open vocabulary models for dimensions Origin and Frequency.
The bars represent accuracies and the line shows the relative fraction a token type over all tokens.

boundary; = (mean_freq — min_freq)/2  (1a)
boundary, = (max_freq — mean_freq)/2  (1b)

low_interval = [min_freq, boundary; | (1c)
medium_interval = [boundary,, boundarys | (1d)
high_interval = [boundary,, max_freq] (1e)
min_freq mean_freq max_freq
boundary, boundary,

~~
low_interval medium_interval  high_interval

Figure A.2. Intervals for determining frequency labels of
code tokens

A.2 Additional Evidence Showing Advantage of the
Open Vocabulary Model

The refined evaluation for the dimensions Origin and Fre-
quency shown in Figure A.1 indicates that the open vocab-
ulary model outperforms closed vocabulary model for all
token types in these dimensions. The notable points are the
results for the in-file and low-frequent token types, which not
only constitute a relatively significant fraction of the dataset,
but are also quite difficult to predict when using the closed
vocabulary. The increased accuracy for these cases (31.1%
and 48.6% for in-file and low-frequent tokens), together with
the results of the analysis in Section 3.2 emphasize the ad-
vantage of using the open vocabulary model instead of the
traditional closed vocabulary model.

A.3 Experimental Setup

We conduct the experiments using the datasets Python150k

and JavaScript150k. The model is fitted on the original train
datasets (i.e. Python100k and JavaScript-100k), but due to

performance reasons evaluated on 1/10th of the evaluation
datasets (i.e. Python50k and JavaScript50k). We use Python
3.7.9 and TensorFlow 2.3.0 for our implementation.

Data preprocessing. The code tokens and subtokens se-
quences are created by traversing ASTs in a depth-first search
order. Due to the considerable noise amount in the dataset,
we eliminate all white spaces, tabs and new lines before col-
lecting tokens for building encoders and creating input files
for our Transformer model. Besides, we performed additional
experiments on the effect of token length on the built vo-
cabulary and prediction accuracy. The experimental results
show that there should be a threshold for token length when
building encoders (e.g. 50) or creating tfrecord files (e.g. 30).
Due to the space limits, these additional experiments are not
presented in this paper.

Experiment configuration. Table A.1 presents the set-
tings used for conducted experiments. The model is trained
and evaluated on one GPU (GeForce RTX 2080 Ti or TI-
TAN Xp). The whole computation process (i.e. preprocessing,
training and evaluating) takes more than two weeks.

Table A.1. Experiment Configuration

Parameter Value
vocabulary_size 10,000
(window_size, step_size) for closed vocabulary (1,000, 500)

(window_size, step_size) for open vocabulary (2,000, 1,000)

batch_size 8
epochs 10
max_len_encoder 50
max_len_data 30
optimizer Adam
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